Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (2)

Search Parameters:
Keywords = dimethyl mesaconate

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
12 pages, 1139 KiB  
Article
Asymmetric Synthesis of Both Enantiomers of Dimethyl 2-Methylsuccinate by the Ene-Reductase-Catalyzed Reduction at High Substrate Concentration
by Jiacheng Li, Jianjiong Li, Yunfeng Cui, Min Wang, Jinhui Feng, Peiyuan Yao, Qiaqing Wu and Dunming Zhu
Catalysts 2022, 12(10), 1133; https://doi.org/10.3390/catal12101133 - 28 Sep 2022
Cited by 1 | Viewed by 2285
Abstract
Chiral dimethyl 2-methylsuccinate (1) is a very important building block for the manufacturing of many active pharmaceutical ingredients and fine chemicals. The asymmetric reduction of C=C double bond of dimethyl citraconate (2), dimethyl mesaconate (3) or dimethyl [...] Read more.
Chiral dimethyl 2-methylsuccinate (1) is a very important building block for the manufacturing of many active pharmaceutical ingredients and fine chemicals. The asymmetric reduction of C=C double bond of dimethyl citraconate (2), dimethyl mesaconate (3) or dimethyl itaconate (4) by ene-reductases (ERs) represents an attractive straightforward approach, but lack of high-performance ERs, especially (S)-selective ones, has limited implementing this method to prepare the optically pure dimethyl 2-methylsuccinate. Herein, three ERs (Bac-OYE1 from Bacillus sp., SeER from Saccharomyces eubayanus and AfER from Aspergillus flavus) with high substrate tolerance and stereoselectivity towards 2, 3 and 4 have been identified. Up to 500 mM of 3 was converted to (S)-dimethyl 2-methylsuccinate ((S)-1) by SeER in high yields (80%) and enantioselectivity (98% ee), and 700 mM of 2 and 400 mM of 4 were converted to (R)-1 by Bac-OYE1 and AfER, respectively, in high yields (86% and 77%) with excellent enantioselectivity (99% ee). The reductions of diethyl citraconate (5), diethyl mesaconate (6) and diethyl itaconate (7) were also tested with the three ERs. Although up to 500 mM of 5 was completely converted to (R)-diethyl 2-methylsuccinate ((R)-8) by Bac-OYE1 with excellent enantioselectivity (99% ee), the alcohol moiety of the esters had a great effect on the activity and enantioselectivity of ERs. This work provides an efficient methodology for the enantiocomplementary production of optically pure dimethyl 2-methylsuccinate from dimethyl itaconate and its isomers at high titer. Full article
Show Figures

Graphical abstract

16 pages, 3427 KiB  
Article
Metabolomics Analysis for Nitrite Degradation by the Metabolites of Limosilactobacillus fermentum RC4
by Chaoran Xia, Qiyuan Tian, Lingyu Kong, Xiaoqian Sun, Jingjing Shi, Xiaoqun Zeng and Daodong Pan
Foods 2022, 11(7), 1009; https://doi.org/10.3390/foods11071009 - 30 Mar 2022
Cited by 20 | Viewed by 3191
Abstract
Nitrite (NIT), a commonly used food additive, especially in pickled and cured vegetables and meat products, might cause acute and chronic diseases. Fermentation with lactic acid bacteria (LAB) is an effective method for degrading NIT and improving the flavor of pickled and cured [...] Read more.
Nitrite (NIT), a commonly used food additive, especially in pickled and cured vegetables and meat products, might cause acute and chronic diseases. Fermentation with lactic acid bacteria (LAB) is an effective method for degrading NIT and improving the flavor of pickled and cured foods. In this study, Limosilactobacillus fermentum (L. fermentum) RC4 with a high NIT degradation ability was found to degrade NIT in a new manner when compared with reported enzymatic and acid degradation, namely, metabolite degradation during fermentation in MRS broth, which shows a synergistic effect with acid to increase NIT degradation. Liquid chromatography–mass spectrometry analysis identified 134 significantly different metabolites, of which 11 metabolites of L. fermentum RC4, namely, γ-aminobutyric acid (GABA), isocitric acid, D-glucose, 3-methylthiopropionic acid (MTP), N-formyl-L-methionine, dimethyl sulfone (MSM), D-ribose, mesaconate, trans-aconitic acid, L-lysine, and carnosine, showed significant NIT degradation effects compared with the control group (MRS broth). Verification experiments showed that adding the above 11 metabolites to 100 mg/L NIT and incubating for 24 h resulted in NIT degradation rates of 5.07%, 4.41%, 6.08%, 16.93%, 5.28%, 2.41%, 0.93%, 18.93%, 12.25%, 6.42%, and 3.21%, respectively. Among these, three metabolites, namely, mesaconate, MTP, and trans-aconitic acid, showed efficient NIT degradation abilities that might be related to the degradation mechanism involving decarboxylation reactions. This is the first systematic study of NIT degradation by LAB, resulting in the identification of a new metabolite degradation pathway and three efficient NIT degradation metabolites. Full article
(This article belongs to the Special Issue Application of Lactobacillus Strains in the Food Industry)
Show Figures

Graphical abstract

Back to TopTop