Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (4)

Search Parameters:
Keywords = desert varnish

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 9161 KiB  
Article
Insights on the Formation Conditions of Manganese Oxides from Crimora, VA (USA)
by Chiara Elmi, Jacob R. Whitlock, Matthew T. Macdowell and Richard D. Foust
Geosciences 2023, 13(8), 235; https://doi.org/10.3390/geosciences13080235 - 8 Aug 2023
Cited by 2 | Viewed by 2672
Abstract
Many regions of the United States contain manganese deposits economically valuable in New England, Appalachian, and Piedmont regions in the Eastern United States, in Northern Arkansas, and, to a small extent, in Central–Western California. Mn oxide/hydroxide (commonly referred to as Mn oxide minerals) [...] Read more.
Many regions of the United States contain manganese deposits economically valuable in New England, Appalachian, and Piedmont regions in the Eastern United States, in Northern Arkansas, and, to a small extent, in Central–Western California. Mn oxide/hydroxide (commonly referred to as Mn oxide minerals) are found in a wide variety of geological settings and occur as fine-grained aggregates, veins, marine and freshwater nodules and concretions, crusts, dendrites, and coatings on rock surfaces (e.g., desert varnish). How manganese oxides form and what mechanisms determine which oxides are likely to form are limited and still debated. This paper focuses on Mn oxides collected at the southern bound of the abandoned open-pit site called Crimora Mine (Augusta County, Virginia). This study uses mineralogical and chemical features to shed light on the origin of manganese deposits in Crimora along the western foot of the Blue Ridge in South–West Virginia. We report the first detailed study on the genesis of the Crimora manganese deposit conducted since the mine was closed in the 1950s. Crimora Mine sample is dark black fine- to medium-grained round and oblong nodules coated with a fine-grained intermix of yellowish earthy limonite, clays, and quartz. Scanning electron microscopy (SEM) revealed that the Crimora Mn-oxides exhibit concentric layering, breccia-like matrices, and veins. X-ray powder diffraction (XRPD) identified the set of Mn minerals as hollandite and birnessite. The concentration and range of dissolved chemical species in freshwater, seawater, and hydrothermal depositional fluids impart a geochemical signature to the Mn-oxides, providing a diagnostic tool to shed light on their genetic origin. Inductively coupled plasma optical emission spectroscopy (ICP-OES) analysis of the Crimora manganese oxides shows Mn, Fe, and Ti, as well as trace elements such as Co, Ba, Y, Zn, Cr, Ni, Tl, La, V, and Li. A bivariate analysis based on the geochemical correlation of Mn and other common substituting cations (e.g., Fe, Co, Ti) shows a mixed genesis in different environments with varying biological and sedimentary supergene (freshwater and marine) conditions. These data suggest that the Mn-rich deposit in Crimora, VA, was formed in a continental margin environment of surficial deposits and reprecipitated in mixed biogenic and supergene conditions. Full article
Show Figures

Figure 1

24 pages, 5597 KiB  
Article
A Multi-Analytical Approach to Infer Mineral–Microbial Interactions Applied to Petroglyph Sites in the Negev Desert of Israel
by Laura Rabbachin, Guadalupe Piñar, Irit Nir, Ariel Kushmaro, Mariela J. Pavan, Elisabeth Eitenberger, Monika Waldherr, Alexandra Graf and Katja Sterflinger
Appl. Sci. 2022, 12(14), 6936; https://doi.org/10.3390/app12146936 - 8 Jul 2022
Cited by 8 | Viewed by 3476
Abstract
Petroglyph sites exist all over the world. They are one of the earliest forms of mankind’s expression and a precursor to art. Despite their outstanding value, comprehensive research on conservation and preservation of rock art is minimal, especially as related to biodeterioration. For [...] Read more.
Petroglyph sites exist all over the world. They are one of the earliest forms of mankind’s expression and a precursor to art. Despite their outstanding value, comprehensive research on conservation and preservation of rock art is minimal, especially as related to biodeterioration. For this reason, the main objective of this study was to explore the factors involved in the degradation of petroglyph sites in the Negev desert of Israel, with a focus on biodegradation processes. Through the use of culture-independent microbiological methods (metagenomics), we characterized the microbiomes of the samples, finding they were dominated by bacterial communities, in particular taxa of Actinobacteria and Cyanobacteria, with resistance to radiation and desiccation. By means of XRF and Raman spectroscopies, we defined the composition of the stone (calcite and quartz) and the dark crust (clay minerals with Mn and Fe oxides), unveiling the presence of carotenoids, indicative of biological colonization. Optical microscopy and SEM–EDX analyses on thin sections highlighted patterns of weathering, possibly connected to the presence of biodeteriorative microorganisms that leach the calcareous matrix from the bedrock and mobilize metal cations from the black varnish for metabolic processes, slowly weathering it. Full article
(This article belongs to the Special Issue Interdisciplinary Researches for Cultural Heritage Conservation)
Show Figures

Figure 1

20 pages, 5962 KiB  
Article
Analysis of Rock Varnish from the Mojave Desert by Handheld Laser-Induced Breakdown Spectroscopy
by Russell S. Harmon, Daria Khashchevskaya, Michelle Morency, Lewis A. Owen, Morgan Jennings, Jeffrey R. Knott and Jason M. Dortch
Molecules 2021, 26(17), 5200; https://doi.org/10.3390/molecules26175200 - 27 Aug 2021
Cited by 13 | Viewed by 3935
Abstract
Laser-induced breakdown spectroscopy (LIBS) is a form of optical emission spectroscopy that can be used for the rapid analysis of geological materials in the field under ambient environmental conditions. We describe here the innovative use of handheld LIBS for the in situ analysis [...] Read more.
Laser-induced breakdown spectroscopy (LIBS) is a form of optical emission spectroscopy that can be used for the rapid analysis of geological materials in the field under ambient environmental conditions. We describe here the innovative use of handheld LIBS for the in situ analysis of rock varnish. This thinly laminated and compositionally complex veneer forms slowly over time on rock surfaces in dryland regions and is particularly abundant across the Mojave Desert climatic region of east-central California (USA). Following the depth profiling examination of a varnished clast from colluvial gravel in Death Valley in the laboratory, our in situ analysis of rock varnish and visually similar coatings on rock surfaces was undertaken in the Owens and Deep Spring valleys in two contexts, element detection/identification and microchemical mapping. Emission peaks were recognized in the LIBS spectra for the nine elements most abundant in rock varnish—Mn, Fe, Si, Al, Na, Mg, K, Ca and Ba, as well as for H, Li, C, O, Ti, V, Sr and Rb. Focused follow-up laboratory and field studies will help understand rock varnish formation and its utility for weathering and chronological studies. Full article
Show Figures

Graphical abstract

28 pages, 7211 KiB  
Article
Nanoscale Observations Support the Importance of Chemical Processes in Rock Decay and Rock Coating Development in Cold Climates
by Ronald I. Dorn and David H. Krinsley
Geosciences 2019, 9(3), 121; https://doi.org/10.3390/geosciences9030121 - 9 Mar 2019
Cited by 13 | Viewed by 4234
Abstract
Conventional scholarship long held that rock fracturing from physical processes dominates over chemical rock decay processes in cold climates. The paradigm of the supremacy of cold-climate shattering was questioned by Rapp’s discovery (1960) that the flux of dissolved solids leaving a Kärkevagge, Swedish [...] Read more.
Conventional scholarship long held that rock fracturing from physical processes dominates over chemical rock decay processes in cold climates. The paradigm of the supremacy of cold-climate shattering was questioned by Rapp’s discovery (1960) that the flux of dissolved solids leaving a Kärkevagge, Swedish Lapland, watershed exceeded physical denudation processes. Many others since have gone on to document the importance of chemical rock decay in all cold climate landscapes, using a wide variety of analytical approaches. This burgeoning scholarship, however, has only generated a few nanoscale studies. Thus, this paper’s purpose rests in an exploration of the potential for nanoscale research to better understand chemical processes operating on rock surfaces in cold climates. Samples from several Antarctica locations, Greenland, the Tibetan Plateau, and high altitude tropical and mid-latitude mountains all illustrate ubiquitous evidence of chemical decay at the nanoscale, even though the surficial appearance of each landscape is dominated by “bare fresh rock.” With the growing abundance of focused ion beam (FIB) instruments facilitating sample preparation, the hope is that that future rock decay researchers studying cold climates will add nanoscale microscopy to their bag of tools. Full article
Show Figures

Figure 1

Back to TopTop