Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (9)

Search Parameters:
Keywords = dense UF membrane

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
13 pages, 4271 KiB  
Article
Comparison of Coagulation-Integrated Sand Filtration and Ultrafiltration for Seawater Reverse Osmosis Pretreatment
by Qingao Li, Lixin Xie, Shichang Xu and Wen Zhang
Membranes 2024, 14(6), 125; https://doi.org/10.3390/membranes14060125 - 29 May 2024
Cited by 3 | Viewed by 1934
Abstract
The removal of dissolved organic matter (DOM) from seawater before the reverse osmosis (RO) processes is crucial for alleviating organic fouling of RO membranes. However, research is still insufficiently developed in the comparison of the effectiveness of integrating coagulation with ultrafiltration (UF) or [...] Read more.
The removal of dissolved organic matter (DOM) from seawater before the reverse osmosis (RO) processes is crucial for alleviating organic fouling of RO membranes. However, research is still insufficiently developed in the comparison of the effectiveness of integrating coagulation with ultrafiltration (UF) or sand filtration (SF) in the pretreatment stage of seawater reverse osmosis (SWRO) for the removal of DOM. In this study, we investigated the effect of pretreatment technologies on RO fouling caused by DOM in seawater, including the integration of coagulation and sand filtration (C-S pretreatment) and the integration of coagulation and ultrafiltration (C-U pretreatment). Both integrated pretreatments achieved comparable DOM removal rates (70.2% for C-U and 69.6% for C-S), and C-S exhibited enhanced removal of UV-absorbing compounds. Although C-U was more proficient in reducing the silt density index (below 2) compared to C-S (above 3) and improved the elimination of humic acid-like organics, it left a higher proportion of tyrosine-protein-like organics, soluble microbial by-product-like organics, and finer organics in the effluent, leading to the formation of a dense cake layer on RO membrane and a higher flux decline. Therefore, suitable technologies should be selected according to specific water conditions to efficiently mitigate RO membrane fouling. Full article
Show Figures

Figure 1

10 pages, 3321 KiB  
Article
Facile Preparation of Dense Polysulfone UF Membranes with Enhanced Salt Rejection by Post-Heating
by Fanxin Kong, Lian You, Dingwen Zhang, Guangdong Sun and Jinfu Chen
Membranes 2023, 13(9), 759; https://doi.org/10.3390/membranes13090759 - 27 Aug 2023
Cited by 7 | Viewed by 1651
Abstract
Polysulfone (PSf) membranes typically have a negligible rejection of salts due to the intrinsic larger pore size and wide pore size distribution. In this work, a facile and scalable heat treatment was proposed to increase the salt rejection. The influence of heat treatment [...] Read more.
Polysulfone (PSf) membranes typically have a negligible rejection of salts due to the intrinsic larger pore size and wide pore size distribution. In this work, a facile and scalable heat treatment was proposed to increase the salt rejection. The influence of heat treatment on the structure and performance of PSf membranes was systematically investigated. The average pore size decreased from 9.94 ± 5.5 nm for pristine membranes to 1.18 ± 0.19 nm with the increase in temperature to 50 °C, while the corresponding porosity decreased from 2.07% to 0.13%. Meanwhile, the thickness of the sponge structure decreased from 20.20 to 11.5 μm as the heat treatment temperature increased to 50 °C. The MWCO of PSf decreased from 290,000 Da to 120 Da, whereas the membrane pore size decreased from 5.5 to 0.19 nm. Correspondingly, the water flux decreased from 1545 to 27.24 L·m−2·h−1, while the rejection ratio increased from 3.1% to 74.0% for Na2SO4, from 1.3% to 48.2% for MgSO4, and from 0.6% to 23.8% for NaCl. Meanwhile, mechanism analysis indicated that the water evaporation in the membranes resulted in the shrinkage of the membrane pores and decrease in the average pore size, thus improving the separation performance. In addition, the desalting performance of the heat-treated membranes for real actual industrial wastewater was improved. This provides a facile and scalable route for PSf membrane applications for enhanced desalination. Full article
(This article belongs to the Section Membrane Applications)
Show Figures

Figure 1

11 pages, 4350 KiB  
Article
Thin Film Composite Membranes Based on the Polymer of Intrinsic Microporosity PIM-EA(Me2)-TB Blended with Matrimid®5218
by Mariagiulia Longo, Marcello Monteleone, Elisa Esposito, Alessio Fuoco, Elena Tocci, Maria-Chiara Ferrari, Bibiana Comesaña-Gándara, Richard Malpass-Evans, Neil B. McKeown and Johannes C. Jansen
Membranes 2022, 12(9), 881; https://doi.org/10.3390/membranes12090881 - 13 Sep 2022
Cited by 15 | Viewed by 3788
Abstract
In this work, thin film composite (TFC) membranes were fabricated with the selective layer based on a blend of polyimide Matrimid®5218 and polymer of intrinsic microporosity (PIM) composed of Tröger’s base, TB, and dimethylethanoanthracene units, PIM-EA(Me2)-TB. The TFCs were [...] Read more.
In this work, thin film composite (TFC) membranes were fabricated with the selective layer based on a blend of polyimide Matrimid®5218 and polymer of intrinsic microporosity (PIM) composed of Tröger’s base, TB, and dimethylethanoanthracene units, PIM-EA(Me2)-TB. The TFCs were prepared with different ratios of the two polymers and the effect of the PIM content in the blend of the gas transport properties was studied for pure He, H2, O2, N2, CH4, and CO2 using the well-known time lag method. The prepared TFC membranes were further characterized by IR spectroscopy and scanning electron microscopy (SEM). The role of the support properties for the TFC membrane preparation was analysed for four different commercial porous supports (Nanostone Water PV 350, Vladipor Fluoroplast 50, Synder PAN 30 kDa, and Sulzer PAN UF). The Sulzer PAN UF support with a relatively small pore size favoured the formation of a defect-free dense layer. All the TFC membranes supported on Sulzer PAN UF presented a synergistic enhancement in CO2 permeance, and CO2/CH4 and CO2/N2 ideal selectivity. The permeance increased about two orders of magnitude with respect to neat Matrimid, up to ca. 100 GPU, the ideal CO2/CH4 selectivity increased from approximately 10 to 14, and the CO2/N2 selectivity from approximately 20 to 26 compared to the thick dense reference membrane of PIM-EA(Me2)-TB. The TFC membranes exhibited lower CO2 permeances than expected on the basis of their thickness—most likely due to enhanced aging of thin films and to the low surface porosity of the support membrane, but a higher selectivity for the gas pairs CO2/N2, CO2/CH4, O2/N2, and H2/N2. Full article
Show Figures

Graphical abstract

14 pages, 2089 KiB  
Article
Influence of Solute Size on Membrane Fouling during Polysaccharide Enrichment Using Dense Polymeric UF Membrane: Measurements and Mechanisms
by Pooreum Kim, Hyungsoo Kim, Heekyong Oh, Joon-seok Kang, Sangyoup Lee and Kitae Park
Membranes 2022, 12(2), 142; https://doi.org/10.3390/membranes12020142 - 24 Jan 2022
Cited by 4 | Viewed by 2559
Abstract
Fouling mechanisms associated with membrane-based polysaccharide enrichment were determined using a dense ultrafiltration (UF) membrane. Dextran with different molecular weights (MWs) was used as a surrogate for polysaccharides. The influence of dextran MW on fouling mechanisms was quantified using the Hermia model. Flux [...] Read more.
Fouling mechanisms associated with membrane-based polysaccharide enrichment were determined using a dense ultrafiltration (UF) membrane. Dextran with different molecular weights (MWs) was used as a surrogate for polysaccharides. The influence of dextran MW on fouling mechanisms was quantified using the Hermia model. Flux data obtained with different dextran MWs and filtration cycles were plotted to quantify the more appropriate fouling mechanisms among complete pore blocking, standard pore blocking, intermediate pore blocking, and cake filtration. For 100,000 Da dextran, all four mechanisms contributed to the initial fouling. As the filtration progressed, the dominant fouling mechanism appeared to be cake filtration with a regression coefficient (R2) of approximately 0.9519. For 10,000 Da, the R2 value for cake filtration was about 0.8767 in the initial filtration. Then, the R2 value gradually decreased as the filtration progressed. For 6000 Da, the R2 values of the four mechanisms were very low in the initial filtration. However, as the filtration progressed, the R2 value for cake filtration reached 0.9057. These results clearly show that the fouling mechanism of dense UF membranes during polysaccharide enrichment can be quantified. In addition, it was confirmed that the dominant fouling mechanism can change with the size of the polysaccharide and the duration of filtration. Full article
(This article belongs to the Special Issue Surface and Interface Engineering of Polymeric Membrane)
Show Figures

Figure 1

13 pages, 1518 KiB  
Article
Flux Increase Occurring When an Ultrafiltration Membrane Is Flipped from a Normal to an Inverted Position—Experiments and Theory
by Ladan Zoka, Ying Siew Khoo, Woei Jye Lau, Takeshi Matsuura, Roberto Narbaitz and Ahmad Fauzi Ismail
Membranes 2022, 12(2), 129; https://doi.org/10.3390/membranes12020129 - 21 Jan 2022
Cited by 6 | Viewed by 3514
Abstract
The effects of flipping membranes with hydrophilic/hydrophobic asymmetry are well documented in the literature, but not much is known on the impact of flipping a membrane with dense/porous layer asymmetry. In this work, the pure water flux (PWF) of a commercial polyethersulfone (PES) [...] Read more.
The effects of flipping membranes with hydrophilic/hydrophobic asymmetry are well documented in the literature, but not much is known on the impact of flipping a membrane with dense/porous layer asymmetry. In this work, the pure water flux (PWF) of a commercial polyethersulfone (PES) membrane and a ceramic ultrafiltration (UF) membrane was measured in the normal and inverted positions. Our experimental results showed that the PWF was two orders of magnitude higher when the PES membrane was flipped to the inverted position, while the increase was only two times for the ceramic membrane. The filtration experiments were also carried out using solutions of bovine serum albumin and poly(vinylpyrrolidone). A mathematical model was further developed to explain the PWF increase in the inverted position based on the Bernoulli’s rule, considering a straight cylindrical pore of small radius connected to a pore of larger radius in series. It was found by simulation that a PWF increase was indeed possible when the solid ceramic membrane was flipped, maintaining its pore geometry. The flow from a layer with larger pore size to a layer with smaller pore size occurred in the backwashing of the fouled membrane and in forward and pressure-retarded osmosis when the membrane was used with its active layer facing the draw solution (AL-DS). Therefore, this work is of practical significance for the cases where the direction of the water flow is in the inverted position of the membrane. Full article
Show Figures

Figure 1

12 pages, 2142 KiB  
Article
Solvent and pH Stability of Poly(styrene-alt-maleic acid) (PSaMA) Membranes Prepared by Aqueous Phase Separation (APS)
by Wouter M. Nielen, Joshua D. Willott and Wiebe M. de Vos
Membranes 2021, 11(11), 835; https://doi.org/10.3390/membranes11110835 - 29 Oct 2021
Cited by 3 | Viewed by 3186
Abstract
In the single-polyelectrolyte aqueous phase separation (APS) approach, membranes are prepared by precipitating a weak polyelectrolyte from a concentrated aqueous solution using a pH switch. This has proven to be a versatile and more sustainable method compared to conventional approaches as it significantly [...] Read more.
In the single-polyelectrolyte aqueous phase separation (APS) approach, membranes are prepared by precipitating a weak polyelectrolyte from a concentrated aqueous solution using a pH switch. This has proven to be a versatile and more sustainable method compared to conventional approaches as it significantly reduces the use of organic solvents. Poly(styrene-alt-maleic acid) (PSaMA) is a polymer that has been extensively investigated for APS and has been the basis for both open and dense membranes with good performances. These membranes are chemically crosslinked and, in this work, we further investigated ultrafiltration (UF) and nanofiltration (NF) membranes prepared with PSaMA for their stability in various organic solvents and under different pH conditions. It was shown that these membranes had stable performances in both isopropanol (IPA) and toluene, and a slightly reduced performance in N-methyl-2-pyrollidone (NMP). However, PSaMA did not perform well as a selective layer in these solvents, indicating that the real opportunity would be to use the UF-type PSaMA membranes as solvent-stable support membranes. Additionally, the membranes proved to be stable in an acidic-to-neutral pH regime (pH 2–7); and, due to the pH-responsive nature of PSaMA, for the NF membranes, a pH-dependent retention of Mg2+ and SO42− ions was observed and, for the UF membranes, a strong responsive behavior was observed, where the pH can be used to control the membrane permeability. However, long-term exposure to elevated pH conditions (pH 8–10) resulted in severe swelling of the NF membranes, resulting in defect formation, and compaction of the UF membranes. For the UF membranes, this compaction did prove to be reversible for some but not all of the membrane samples measured. These results showed that in aqueous systems, membranes prepared with PSaMA had interesting responsive behaviors but performed best at neutral and acidic pH values. Moreover, the membranes exhibited excellent stability in the organic solvents IPA and toluene Full article
(This article belongs to the Collection Polymeric Membranes: Science, Materials and Applications)
Show Figures

Figure 1

15 pages, 781 KiB  
Review
Pressure-Driven Membrane Process: A Review of Advanced Technique for Heavy Metals Remediation
by Bharti Verma, Chandrajit Balomajumder, Manigandan Sabapathy and Sarang P. Gumfekar
Processes 2021, 9(5), 752; https://doi.org/10.3390/pr9050752 - 24 Apr 2021
Cited by 43 | Viewed by 5977
Abstract
Pressure-driven processes have come a long way since they were introduced. These processes, namely Ultra-Filtration (UF), Nano-Filtration (NF), and Reverse-Osmosis (RO), aim to enhance the efficiency of wastewater treatment, thereby aiming at a cleaner production. Membranes may be polymeric, ceramic, metallic, or organo-mineral, [...] Read more.
Pressure-driven processes have come a long way since they were introduced. These processes, namely Ultra-Filtration (UF), Nano-Filtration (NF), and Reverse-Osmosis (RO), aim to enhance the efficiency of wastewater treatment, thereby aiming at a cleaner production. Membranes may be polymeric, ceramic, metallic, or organo-mineral, and the filtration techniques differ in pore size from dense to porous membrane. The applied pressure varies according to the method used. These are being utilized in many exciting applications in, for example, the food industry, the pharmaceutical industry, and wastewater treatment. This paper attempts to comprehensively review the principle behind the different pressure-driven membrane technologies and their use in the removal of heavy metals from wastewater. The transport mechanism has been elaborated, which helps in the predictive modeling of the membrane system. Fouling of the membrane is perhaps the only barrier to the emergence of membrane technology and its full acceptance. However, with the use of innovative techniques of fabrication, this can be overcome. This review is concluded with perspective recommendations that can be incorporated by researchers worldwide as a new problem statement for their work. Full article
(This article belongs to the Special Issue Design and Applications of Polymeric Flocculants)
Show Figures

Figure 1

13 pages, 895 KiB  
Article
Implementation, Design and Cost Assessment of a Membrane-Based Process for Selectively Enriching Desalinated Water with Divalent Seawater Ions
by Liat Birnhack, Samuel C. N. Tang and Ori Lahav
ChemEngineering 2018, 2(3), 41; https://doi.org/10.3390/chemengineering2030041 - 3 Sep 2018
Cited by 13 | Viewed by 4401
Abstract
The paper describes results from operating a new 3-step membrane-based process targeted at separating Mg2+ from seawater in an inexpensive way, with the purpose of using it to enrich desalinated water with magnesium, with as little as possible Cl and Na [...] Read more.
The paper describes results from operating a new 3-step membrane-based process targeted at separating Mg2+ from seawater in an inexpensive way, with the purpose of using it to enrich desalinated water with magnesium, with as little as possible Cl and Na+ addition. To this end, seawater undergoes a series of processes aimed at increasing the Mg2+ concentration from ~1350 to ~4000 mg/L through nanofiltration while the monovalent ion concentrations are reduced by a nanofiltration-diananofiltration sequence, in which the diluent is RO produced water from a desalination plant. A dense ultrafiltration (UF) step precedes the nanofiltration-diananofiltration (NF-DiaNF) cycles. In this step sulfate in seawater is rejected better than divalent cations hence the retentate of this step has a ratio of total hardness to sulfate (([Ca2+] + [Mg2+])/[SO42−] → 1) which enables attaining an almost complete washout of monovalent ions in the DiaNF step. The paper is concluded with presentation of general design of the process steps and a cost assessment, which shows the process to be both flexible in the quality of the rich Mg solution generated, and cost competitive, relative to other alternatives. Full article
Show Figures

Graphical abstract

14 pages, 6808 KiB  
Article
Highly and Stably Water Permeable Thin Film Nanocomposite Membranes Doped with MIL-101 (Cr) Nanoparticles for Reverse Osmosis Application
by Yuan Xu, Xueli Gao, Xiaojuan Wang, Qun Wang, Zhiyong Ji, Xinyan Wang, Tao Wu and Congjie Gao
Materials 2016, 9(11), 870; https://doi.org/10.3390/ma9110870 - 26 Oct 2016
Cited by 119 | Viewed by 9639
Abstract
A hydrophilic, hydrostable porous metal organic framework (MOF) material-MIL-101 (Cr) was successfully doped into the dense selective polyamide (PA) layer on the polysulfone (PS) ultrafiltration (UF) support to prepare a new thin film nanocomposite (TFN) membrane for water desalination. The TFN-MIL-101 (Cr) membranes [...] Read more.
A hydrophilic, hydrostable porous metal organic framework (MOF) material-MIL-101 (Cr) was successfully doped into the dense selective polyamide (PA) layer on the polysulfone (PS) ultrafiltration (UF) support to prepare a new thin film nanocomposite (TFN) membrane for water desalination. The TFN-MIL-101 (Cr) membranes were characterized by SEM, AFM, XPS, wettability measurement and reverse osmosis (RO) test. The porous structures of MIL-101 (Cr) can establish direct water channels in the dense selective PA layer for water molecules to transport through quickly, leading to the increasing water permeance of membranes. With good compatibility between MIL-101 (Cr) nanoparticles and the PA layer, the lab made TFN-MIL-101 (Cr) membranes integrated tightly and showed a high NaCl salt rejection. MIL-101 (Cr) nanoparticles increased water permeance to 2.2 L/m2·h·bar at 0.05 w/v % concentration, 44% higher than the undoped PA membranes; meanwhile, the NaCl rejection remained higher than 99%. This study experimentally verified the potential use of MIL-101 (Cr) in advanced TFN RO membranes, which can be used in the diversified water purification field. Full article
(This article belongs to the Special Issue Porous Materials for Water Technology)
Show Figures

Figure 1

Back to TopTop