Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (4)

Search Parameters:
Keywords = cysteamine dioxygenase

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 2715 KiB  
Article
Ado-Mediated Depletion of Taurine Impairs Mitochondrial Respiratory Capacity and Alters the Chromatin Landscape of Inguinal Adipose Tissue
by Pei-Yin Tsai, Bo Shui, Seoyeon Lee, Yang Liu, Yue Qu, Chloe Cheng, Kaydine Edwards, Callie Wong, Ryan Meng-Killeen, Paul D. Soloway and Joeva J. Barrow
Nutrients 2023, 15(16), 3532; https://doi.org/10.3390/nu15163532 - 11 Aug 2023
Cited by 5 | Viewed by 2345
Abstract
Non-shivering thermogenesis (NST) has strong potential to combat obesity; however, a safe molecular approach to activate this process has not yet been identified. The sulfur amino acid taurine has the ability to safely activate NST and confer protection against obesity and metabolic disease [...] Read more.
Non-shivering thermogenesis (NST) has strong potential to combat obesity; however, a safe molecular approach to activate this process has not yet been identified. The sulfur amino acid taurine has the ability to safely activate NST and confer protection against obesity and metabolic disease in both mice and humans, but the mechanism of this action is unknown. In this study, we discover that a suite of taurine biosynthetic enzymes, especially that of cysteamine dioxygenase (ADO), significantly increases in response to β3 adrenergic signaling in inguinal adipose tissue (IWAT) in order to increase intracellular concentrations of taurine. We further show that ADO is critical for thermogenic mitochondrial respiratory function as its ablation in adipocytes significantly reduces taurine levels, which leads to declines in mitochondrial oxygen consumption rates. Finally, we demonstrate via assay for transposase-accessible chromatin with sequencing (ATAC-seq) that taurine supplementation in beige adipocytes has the ability to remodel the chromatin landscape to increase the chromatin accessibility and transcription of genes, such as glucose-6-phosphate isomerase 1 (Gpi1), which are critical for NST. Taken together, our studies highlight a potential mechanism for taurine in the activation of NST that can be leveraged toward the treatment of obesity and metabolic disease. Full article
(This article belongs to the Section Nutrition and Obesity)
Show Figures

Figure 1

14 pages, 3903 KiB  
Article
Oxygen-Sensing Protein Cysteamine Dioxygenase from Mandarin Fish Involved in the Arg/N-Degron Pathway and Siniperca chuatsi Rhabdovirus Infection
by Wenhui Liu, Jian He, Zhimin Li, Shaoping Weng, Changjun Guo and Jianguo He
Viruses 2023, 15(8), 1644; https://doi.org/10.3390/v15081644 - 28 Jul 2023
Cited by 5 | Viewed by 1811
Abstract
Mammalia cysteamine (2-aminoethanethiol) dioxygenase (ADO) controls the stability of the regulator of G protein signaling 4 (RGS4) through the Cys branch of the Arg/N-degron pathway, thereby affecting the response of the body to hypoxia. However, the oxygen-sensing function of ADO remains unknown in [...] Read more.
Mammalia cysteamine (2-aminoethanethiol) dioxygenase (ADO) controls the stability of the regulator of G protein signaling 4 (RGS4) through the Cys branch of the Arg/N-degron pathway, thereby affecting the response of the body to hypoxia. However, the oxygen-sensing function of ADO remains unknown in teleost fish. Mandarin fish (Siniperca chuatsi) is one of the most important freshwater economic fishes in China. As the scale of the rearing density continues to increase, hypoxia has become an important factor threatening the growth of mandarin fish. Herein, the molecular characterization, the oxygen-sensing enzyme function, and the role in virus infection of ADO from mandarin fish (scADO) were explored. Bioinformation analysis results showed that scADO had all the molecular foundations for achieving thiol dioxygenase function: three histidine residues coordinated with Fe(II), PCO/ADO domain, and a “jelly roll” β-barrel structure. The expression pattern analysis showed that scAdo was highly expressed in the immune-related tissues, liver, and kidneys and responded to hypoxia on the expression level. Protein degradation experiment results revealed that scADO could lead to the degradation of RGS4 protein through the Cys branch of the Arg/N-degron pathway. Furthermore, the expression levels of scADO responded to fish virus infection. scADO could significantly promote the replication of Siniperca chuatsi rhabdovirus, and this was associated with its thiol dioxygenase activity. These findings not only demonstrate scADO as an oxygen-sensing protein in teleost fish, but are also of considerable importance for clarifying the contribution of the mechanism of hypoxia to the outbreaks of fish viruses. Full article
(This article belongs to the Section General Virology)
Show Figures

Figure 1

20 pages, 1312 KiB  
Review
Oxygen Sensing and Viral Replication: Implications for Tropism and Pathogenesis
by Peter Jianrui Liu, Peter Balfe, Jane A McKeating and Mirjam Schilling
Viruses 2020, 12(11), 1213; https://doi.org/10.3390/v12111213 - 25 Oct 2020
Cited by 21 | Viewed by 5800
Abstract
The ability to detect and respond to varying oxygen tension is an essential prerequisite to life. Several mechanisms regulate the cellular response to oxygen including the prolyl hydroxylase domain (PHD)/factor inhibiting HIF (FIH)-hypoxia inducible factor (HIF) pathway, cysteamine (2-aminoethanethiol) dioxygenase (ADO) system, and [...] Read more.
The ability to detect and respond to varying oxygen tension is an essential prerequisite to life. Several mechanisms regulate the cellular response to oxygen including the prolyl hydroxylase domain (PHD)/factor inhibiting HIF (FIH)-hypoxia inducible factor (HIF) pathway, cysteamine (2-aminoethanethiol) dioxygenase (ADO) system, and the lysine-specific demethylases (KDM) 5A and KDM6A. Using a systems-based approach we discuss the literature on oxygen sensing pathways in the context of virus replication in different tissues that experience variable oxygen tension. Current information supports a model where the PHD-HIF pathway enhances the replication of viruses infecting tissues under low oxygen, however, the reverse is true for viruses with a selective tropism for higher oxygen environments. Differences in oxygen tension and associated HIF signaling may play an important role in viral tropism and pathogenesis. Thus, pharmaceutical agents that modulate HIF activity could provide novel treatment options for viral infections and associated pathological conditions. Full article
(This article belongs to the Section Animal Viruses)
Show Figures

Figure 1

15 pages, 2285 KiB  
Article
Taurine Biosynthesis in a Fish Liver Cell Line (ZFL) Adapted to a Serum-Free Medium
by Chieh-Lun Liu, Aaron M. Watson, Allen R. Place and Rosemary Jagus
Mar. Drugs 2017, 15(6), 147; https://doi.org/10.3390/md15060147 - 25 May 2017
Cited by 21 | Viewed by 8254
Abstract
Although taurine has been shown to play multiple important physiological roles in teleosts, little is known about the molecular mechanisms underlying dietary requirements. Cell lines can provide useful tools for deciphering biosynthetic pathways and their regulation. However, culture media and sera contain variable [...] Read more.
Although taurine has been shown to play multiple important physiological roles in teleosts, little is known about the molecular mechanisms underlying dietary requirements. Cell lines can provide useful tools for deciphering biosynthetic pathways and their regulation. However, culture media and sera contain variable taurine levels. To provide a useful cell line for the investigation of taurine homeostasis, an adult zebrafish liver cell line (ZFL) has been adapted to a taurine-free medium by gradual accommodation to a commercially available synthetic medium, UltraMEM™-ITES. Here we show that ZFL cells are able to synthesize taurine and be maintained in medium without taurine. This has allowed for the investigation of the effects of taurine supplementation on cell growth, cellular amino acid pools, as well as the expression of the taurine biosynthetic pathway and taurine transporter genes in a defined fish cell type. After taurine supplementation, cellular taurine levels increase but hypotaurine levels stay constant, suggesting little suppression of taurine biosynthesis. Cellular methionine levels do not change after taurine addition, consistent with maintenance of taurine biosynthesis. The addition of taurine to cells grown in taurine-free medium has little effect on transcript levels of the biosynthetic pathway genes for cysteine dioxygenase (CDO), cysteine sulfinate decarboxylase (CSAD), or cysteamine dioxygenase (ADO). In contrast, supplementation with taurine causes a 30% reduction in transcript levels of the taurine transporter, TauT. This experimental approach can be tailored for the development of cell lines from aquaculture species for the elucidation of their taurine biosynthetic capacity. Full article
(This article belongs to the Special Issue Advances and New Perspectives in Marine Biotechnology II 2016)
Show Figures

Figure 1

Back to TopTop