Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (2)

Search Parameters:
Keywords = curcumin–sulfate conjugate

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
12 pages, 1659 KB  
Article
Comparative Pharmacokinetic Assessment of Curcumin in Rats Following Intratracheal Instillation Versus Oral Administration: Concurrent Detection of Curcumin and Its Conjugates in Plasma by LC-MS/MS
by Nan Li, Jinle Lou, Lingchao Wang, Wenpeng Zhang, Chunmei Jin and Xiaomei Zhuang
Pharmaceutics 2024, 16(11), 1459; https://doi.org/10.3390/pharmaceutics16111459 - 15 Nov 2024
Viewed by 1975
Abstract
Objective: To establish and validate an LC-MS/MS method for the simultaneous determination of curcumin (CUR) as well as its glucuronide conjugate (COG) and sulfate conjugate (COS) in rat plasma. The method was employed to evaluate and compare the pharmacokinetic behaviors of curcumin following [...] Read more.
Objective: To establish and validate an LC-MS/MS method for the simultaneous determination of curcumin (CUR) as well as its glucuronide conjugate (COG) and sulfate conjugate (COS) in rat plasma. The method was employed to evaluate and compare the pharmacokinetic behaviors of curcumin following oral and intratracheal administration in rats. Methods: Rat plasma samples were separated by chromatography on a C18 column after protein precipitation with acetonitrile. Gradient elution with a mobile phase of 0.5 mM ammonium acetate in acetonitrile was utilized. Mass spectrometry detection incorporated an electrospray ionization (ESI) source, multiple reaction monitoring (MRM), and dual-mode (positive and negative) scanning for quantitative analysis. A total of 12 SD rats were randomly divided into two groups and were orally (20 mg/kg) or intratracheally (10 mg/kg) administrated curcumin, respectively. CUR, COG, and COS concentrations in plasma were measured to assess pharmacokinetic disparities. Results: The method demonstrated linearity within the ranges of 2–400 ng/mL for CUR and COS and 5–1000 ng/mL for COG. Intratracheal administration significantly elevated CUR plasma concentrations compared to oral administration. The exposure of COG was higher than COS following oral administration. Conversely, intratracheal administration resulted in markedly higher COS exposure, with no significant difference in COG exposure after dose normalization between oral and inhalation routes. Conclusions: The established LC-MS/MS method provides a reliable tool for the simultaneous measurement of CUR, COG, and COS in rat plasma, facilitating preclinical pharmacokinetic investigations. The study reveals distinct pharmacokinetic profiles for CUR following oral versus intratracheal administration, suggesting that inhalation may offer superior therapeutic efficacy. Full article
(This article belongs to the Special Issue ADME Properties in the Drug Delivery)
Show Figures

Figure 1

11 pages, 466 KB  
Article
Pharmacokinetics-Driven Evaluation of the Antioxidant Activity of Curcuminoids and Their Major Reduced Metabolites—A Medicinal Chemistry Approach
by Gábor Girst, Sándor B. Ötvös, Ferenc Fülöp, György T. Balogh and Attila Hunyadi
Molecules 2021, 26(12), 3542; https://doi.org/10.3390/molecules26123542 - 10 Jun 2021
Cited by 15 | Viewed by 3884
Abstract
Curcuminoids are the main bioactive components of the well-known Asian spice and traditional medicine turmeric. Curcuminoids have poor chemical stability and bioavailability; in vivo they are rapidly metabolized to a set of bioreduced derivatives and/or glucuronide and sulfate conjugates. The reduced curcuminoid metabolites [...] Read more.
Curcuminoids are the main bioactive components of the well-known Asian spice and traditional medicine turmeric. Curcuminoids have poor chemical stability and bioavailability; in vivo they are rapidly metabolized to a set of bioreduced derivatives and/or glucuronide and sulfate conjugates. The reduced curcuminoid metabolites were also reported to exert various bioactivities in vitro and in vivo. In this work, we aimed to perform a comparative evaluation of curcuminoids and their hydrogenated metabolites from a medicinal chemistry point of view, by determining a set of key pharmacokinetic parameters and evaluating antioxidant potential in relation to such properties.Reduced metabolites were prepared from curcumin and demethoxycurcumin through continuous-flow hydrogenation. As selected pharmacokinetic parameters, kinetic solubility, chemical stability, metabolic stability in human liver microsomes, and parallel artificial membrane permeability assay (PAMPA)-based gastrointestinal and blood-brain barrier permeability were determined. Experimentally determined logP for hydrocurcumins in octanol-water and toluene-water systems provided valuable data on the tendency for intramolecular hydrogen bonding by these compounds. Drug likeness of the compounds were further evaluated by a in silico calculations. Antioxidant properties in diphenyl-2-picrylhydrazyl (DPPH) radical scavenging and oxygen radical absorbance capacity (ORAC) assays were comparatively evaluated through the determination of ligand lipophilic efficiency (LLE). Our results showed dramatically increased water solubility and chemical stability for the reduced metabolites as compared to their corresponding parent compound. Hexahydrocurcumin was found the best candidate for drug development based on a complex pharmacokinetical comparison and high LLE values for its antioxidant properties. Development of tetrahydrocurcumin and tetrahydro-demethoxycurcumin would be limited by their very poor metabolic stability, therefore such an effort would rely on formulations bypassing first-pass metabolism. Full article
Show Figures

Figure 1

Back to TopTop