Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (2)

Search Parameters:
Keywords = crystallization of β-xylosidase

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 7660 KiB  
Article
Structural Characterization of β-Xylosidase XynB2 from Geobacillus stearothermophilus CECT43: A Member of the Glycoside Hydrolase Family GH52
by Jose Antonio Gavira, Lellys M. Contreras, Hassan Mohamad Alshamaa, Josefa María Clemente-Jiménez, Felipe Rodríguez-Vico, Francisco Javier Las Heras-Vázquez and Sergio Martínez-Rodríguez
Crystals 2024, 14(1), 18; https://doi.org/10.3390/cryst14010018 - 24 Dec 2023
Cited by 1 | Viewed by 2292
Abstract
β-xylosidases (4-β-d-xylan xylohydrolase, E.C. 3.2.1.37) are glycoside hydrolases (GH) catalyzing the hydrolysis of (1→4)-β-d-xylans, allowing for the removal of β-d-xylose residues from its non-reducing termini. Together with other xylan-degrading enzymes, β-xylosidases are involved in the enzymatic hydrolysis [...] Read more.
β-xylosidases (4-β-d-xylan xylohydrolase, E.C. 3.2.1.37) are glycoside hydrolases (GH) catalyzing the hydrolysis of (1→4)-β-d-xylans, allowing for the removal of β-d-xylose residues from its non-reducing termini. Together with other xylan-degrading enzymes, β-xylosidases are involved in the enzymatic hydrolysis of lignocellulosic biomass, making them highly valuable in the biotechnological field. Whereas different GH families are deeply characterized from a structural point of view, the GH52 family has been barely described. In this work, we report the 2.25 Å resolution structure of Geobacillus stearothermophilus CECT43 XynB2, providing the second structural characterization for this GH family. A plausible dynamic loop closing the entrance of the catalytic cleft is proposed based on the comparison of the available GH52 structures, suggesting the relevance of a dimeric structure for members of this family. The glycone specificity at the −1 site for GH52 and GH116 members is also explained by our structural studies. Full article
Show Figures

Figure 1

9 pages, 2364 KiB  
Article
Mutation of Key Residues in β-Glycosidase LXYL-P1-2 for Improved Activity
by Jing-Jing Chen, Xiao Liang, Tian-Jiao Chen, Jin-Ling Yang and Ping Zhu
Catalysts 2021, 11(9), 1042; https://doi.org/10.3390/catal11091042 - 28 Aug 2021
Viewed by 2285
Abstract
The β-glycosidase LXYL-P1-2 identified from Lentinula edodes can be used to hydrolyze 7-β-xylosyl-10-deacetyltaxol (XDT) into 10-deacetyltaxol (DT) for the semi-synthesis of Taxol. Recent success in obtaining the high-resolution X-ray crystal of LXYL-P1-2 and resolving its three-dimensional structure has enabled us to perform molecular [...] Read more.
The β-glycosidase LXYL-P1-2 identified from Lentinula edodes can be used to hydrolyze 7-β-xylosyl-10-deacetyltaxol (XDT) into 10-deacetyltaxol (DT) for the semi-synthesis of Taxol. Recent success in obtaining the high-resolution X-ray crystal of LXYL-P1-2 and resolving its three-dimensional structure has enabled us to perform molecular docking of LXYL-P1-2 with substrate XDT and investigate the roles of the three noncatalytic amino acid residues located around the active cavity in LXYL-P1-2. Site-directed mutagenesis results demonstrated that Tyr268 and Ser466 were essential for maintaining the β-glycosidase activity, and the L220G mutation exhibited a positive effect on increasing activity by enlarging the channel that facilitates the entrance of the substrate XDT into the active cavity. Moreover, introducing L220G mutation into the other LXYL-P1-2 mutant further increased the enzyme activity, and the β-d-xylosidase activity of the mutant EP2-L220G was nearly two times higher than that of LXYL-P1-2. Thus, the recombinant yeast GS115-EP2-L220G can be used for efficiently biocatalyzing XDT to DT for the semi-synthesis of Taxol. Our study provides not only the prospective candidate strain for industrial production, but also a theoretical basis for exploring the key amino acid residues in LXYL-P1-2. Full article
(This article belongs to the Special Issue Enzyme Catalysis, Biotransformation and Bioeconomy)
Show Figures

Graphical abstract

Back to TopTop