Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (2)

Search Parameters:
Keywords = cryptic dioecy

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
12 pages, 3101 KiB  
Article
Is the High Proportion of Males in a Population of the Self-Incompatible Fraxinus platypoda (Oleaceae) Indicative of True Androdioecy or Cryptic-Dioecy?
by Hitoshi Sakio and Takashi Nirei
Plants 2022, 11(6), 753; https://doi.org/10.3390/plants11060753 - 11 Mar 2022
Cited by 3 | Viewed by 2637
Abstract
Androdioecy is a rare reproductive system. Fraxinus platypoda, a woody canopy species in Japan’s mountainous riparian zones, is described as a morphologically androdioecious species. In this study, we tried to detect whether F. platypoda is also functionally androdioecious. We analyzed its sexual [...] Read more.
Androdioecy is a rare reproductive system. Fraxinus platypoda, a woody canopy species in Japan’s mountainous riparian zones, is described as a morphologically androdioecious species. In this study, we tried to detect whether F. platypoda is also functionally androdioecious. We analyzed its sexual expression, seed development, pollen morphology and germination ability, pollination systems, and mast flowering behavior. We found that the hermaphrodite trees are andromonoecious, with inflorescences bearing male and hermaphroditic flowers, whereas male individuals had only male flowers. Pollen morphology was identical in male flowers, in hermaphrodite flowers of an andromonoecious individual, and in male flowers of male individuals. Pollen from both types of individuals was capable of germination both ex vivo (on nutrient medium) and in vivo in pollination experiments. However, compared with pollen from andromonoecious trees, pollen from male trees showed a higher germination rate. The self-pollination rate of bagged hermaphroditic flowers was almost zero. The fruit set rate following cross-pollination with male pollen from a male tree was higher than that following natural pollination, whereas the rate with hermaphroditic pollen was the same. The flowering and fruiting of F. platypoda have fluctuated over 17 years; the flowering of the two types of sexual individuals exhibited clear synchronization during this period. The frequency of male individuals within the populations is 50%. The maintenance of such a proportion of males in populations of the self-incompatible F. platypoda is either indicative of a true androdioecious species with a diallelic self-incompatibility system or a cryptic-dioecious species. This alternative is discussed here. Full article
(This article belongs to the Special Issue Floral Biology)
Show Figures

Figure 1

19 pages, 2943 KiB  
Review
Development and Evolution of Unisexual Flowers: A Review
by Florian Jabbour, Felipe Espinosa, Quentin Dejonghe and Timothée Le Péchon
Plants 2022, 11(2), 155; https://doi.org/10.3390/plants11020155 - 7 Jan 2022
Cited by 9 | Viewed by 5878
Abstract
The development of unisexual flowers has been described in a large number of taxa, sampling the diversity of floral phenotypes and sexual systems observed in extant angiosperms, in studies focusing on floral ontogeny, on the evo-devo of unisexuality, or on the genetic and [...] Read more.
The development of unisexual flowers has been described in a large number of taxa, sampling the diversity of floral phenotypes and sexual systems observed in extant angiosperms, in studies focusing on floral ontogeny, on the evo-devo of unisexuality, or on the genetic and chromosomal bases of unisexuality. We review here such developmental studies, aiming at characterizing the diversity of ontogenic pathways leading to functionally unisexual flowers. In addition, we present for the first time and in a two-dimensional morphospace a quantitative description of the developmental rate of the sexual organs in functionally unisexual flowers, in a non-exhaustive sampling of angiosperms with contrasted floral morphologies. Eventually, recommendations are provided to help plant evo-devo researchers and botanists addressing macroevolutionary and ecological issues to more precisely select the taxa, the biological material, or the developmental stages to be investigated. Full article
(This article belongs to the Special Issue Developmental and Genetic Mechanisms of Floral Structure)
Show Figures

Figure 1

Back to TopTop