Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (1)

Search Parameters:
Keywords = crovalimab (PiaSky®)

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 2875 KiB  
Article
Beyond Recycling Antibodies: Crovalimab’s Molecular Design Enables Four-Weekly Subcutaneous Injections for PNH Treatment
by Zenjiro Sampei, Kenta Haraya, Siok Wan Gan, Masaru Muraoka, Akira Hayasaka, Taku Fukuzawa, Meiri Shida-Kawazoe, Yoshinori Tsuboi, Akihiko Gotoh, Naoshi Obara and Yasutaka Ueda
Int. J. Mol. Sci. 2024, 25(21), 11679; https://doi.org/10.3390/ijms252111679 - 30 Oct 2024
Cited by 1 | Viewed by 3856
Abstract
The advent of recycling antibodies, leveraging pH-dependent antigen binding and optimized FcRn interaction, has advanced the field of antibody therapies, enabling extended durability and reduced dosages. Eculizumab (Soliris®) demonstrated the efficacy of C5 inhibitors for paroxysmal nocturnal hemoglobinuria (PNH), while its [...] Read more.
The advent of recycling antibodies, leveraging pH-dependent antigen binding and optimized FcRn interaction, has advanced the field of antibody therapies, enabling extended durability and reduced dosages. Eculizumab (Soliris®) demonstrated the efficacy of C5 inhibitors for paroxysmal nocturnal hemoglobinuria (PNH), while its derivative, ravulizumab (Ultomiris®), recognized as a recycling antibody, extended the dosing intervals. However, limitations including intravenous administration and inefficacy in patients with the R885H single-nucleotide polymorphism (SNP) in C5 could necessitate alternative solutions. Crovalimab (PiaSky®), a next-generation recycling antibody, overcomes these challenges with innovative charge engineering, achieving the enhanced cellular uptake of C5–crovalimab complexes and targeting a unique C5 epitope, allowing for efficacy regardless of the R885H SNP. This study highlights crovalimab’s distinctive molecular features, showing its eliminated binding to Fcγ receptors and C1q, alongside its optimized antigen binding characteristics. The impact of charge engineering was reconfirmed in mice, demonstrating faster C5 clearance than recycling antibodies. Notably, in the maintenance dosing regimen, crovalimab neutralizes approximately seven C5 molecules per antibody on average. Furthermore, its design also reduces the viscosity to facilitate high-concentration formulations suitable for subcutaneous delivery. Consequently, crovalimab offers a four-weekly subcutaneous injection regimen for PNH, marking a substantial improvement in treatment convenience and potentially transforming patients’ quality of life. Full article
Show Figures

Figure 1

Back to TopTop