Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (2)

Search Parameters:
Keywords = cross-rolling perforation

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 17511 KiB  
Article
Perforated and Composite Beam and Arch Design Optimization during Asymmetric Post-Buckling Deformation
by Igor Andrianov, Viktor Olevskyi, Oleksandr Olevskyi and Yuliia Olevska
Symmetry 2024, 16(8), 1050; https://doi.org/10.3390/sym16081050 - 15 Aug 2024
Viewed by 1246
Abstract
The structural elements of buildings have recently required the development of efficient design solutions due to increased dynamic and thermal loads. The main solution for improving the efficiency of such elements involves creating lightweight non-uniform beam and arch structures from alloyed steel, which [...] Read more.
The structural elements of buildings have recently required the development of efficient design solutions due to increased dynamic and thermal loads. The main solution for improving the efficiency of such elements involves creating lightweight non-uniform beam and arch structures from alloyed steel, which has better mechanical characteristics. The most promising approach is the use of welded beams and arches with perforated partitions and composite beams, which are often used together, for instance, as structural elements of cylindrical shells. The development of an effective cross-sectional shape for perforated beams and crane girders is considered, taking into account the strength, local stability, resistance to flat bending, and fatigue deformation. It has been shown that the effective form for perforated beams is a box-shaped structure made of perforated shvellers. Calculations for selecting a rational design from the assortment of hot-rolled shveller profiles have demonstrated that a significant reduction in the weight of the structure can be achieved by using the proposed cross-sectional shape. An evaluation of the fatigue strength of composite metal crane girders operating in harsh conditions has shown the effectiveness of using hot-rolled I-beams as their upper flange, as well as the necessity of using hot-rolled I-beams to ensure strength in their lower part. When choosing the rational parameters of an arch design, multiple recalculations of its bending with respect to technological cutouts in the thickness are necessary; hence, simplified calculation schemes are commonly used. Some authors simplify this process by replacing an arch with a cutout with a solid arch reduced in height by the cutout radius. We have shown that this model does not accurately describe the actual distribution of forces and displacements, leading to inadequate results. We have developed a simplified methodology for the preliminary calculation of a circular arch with a cutout, which includes correction coefficients calculated by us. A calculation of the flat stress–strain state of an elastic circular metal arch with a central semicircular cutout under various ratios of design parameters and uniform external pressure was conducted. A dependence of the stress concentration coefficient at the cutout’s apex on the ratio of the cutout radius and arch thickness was obtained. These results can be generalized for reinforced non-uniform shells and for the fuzzy application of external influences. Full article
(This article belongs to the Section Physics)
Show Figures

Figure 1

19 pages, 11146 KiB  
Article
Effect of Piercing Temperature on Stress—Strain Distribution and Dimensional Accuracy for Ti80 Titanium Alloy Seamless Tubes Based on Numerical Simulation
by Xiaofeng Zhou, Wen Fu, Chengning Li and Fangjie Cheng
Metals 2023, 13(11), 1893; https://doi.org/10.3390/met13111893 - 15 Nov 2023
Cited by 2 | Viewed by 1644
Abstract
Titanium alloy tubes were an ideal material to replace steel tubes. However, the relationship between piercing temperature and dimensional accuracy for titanium alloy seamless tubes was unclear. Therefore, the effects of piercing temperature on the stress—strain distribution and dimensional accuracy of Ti80 titanium [...] Read more.
Titanium alloy tubes were an ideal material to replace steel tubes. However, the relationship between piercing temperature and dimensional accuracy for titanium alloy seamless tubes was unclear. Therefore, the effects of piercing temperature on the stress—strain distribution and dimensional accuracy of Ti80 titanium alloy were studied using thermal simulation compression tests, finite element numerical analysis optimization and optical microscopy. Pierced at 1050 °C, Ti80 titanium alloy was cross-rolled and perforated to obtain a capillary tube, whose dimensional accuracy was better than that of those pierced at 850 °C and 950 °C. The microstructure of Ti80 seamless tubes was layered α-Ti, grain boundary β-Ti and a Widmannstatten structure. The tensile strength, yield strength and absorbed energy were 867 MPa, 692 MPa and 52 J, respectively. Full article
Show Figures

Figure 1

Back to TopTop