Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (1)

Search Parameters:
Keywords = cooksurface

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 3686 KB  
Article
Design Features and Performance Evaluation of Natural-Draft, Continuous Operation Gasifier Cookstove
by Brian Gumino, Nicholas A. Pohlman, Jonathan Barnes and Paul Wever
Clean Technol. 2020, 2(3), 252-269; https://doi.org/10.3390/cleantechnol2030017 - 15 Jul 2020
Cited by 7 | Viewed by 5898
Abstract
Biomass cookstoves are used as a common source of heating and cooking in developing countries with most improved cookstove design focusing on developing efficiency in thermal conversion of fuels and safer operation than open flame fires. A top-lit-up-draft (TLUD) cookstove utilizes a gasification [...] Read more.
Biomass cookstoves are used as a common source of heating and cooking in developing countries with most improved cookstove design focusing on developing efficiency in thermal conversion of fuels and safer operation than open flame fires. A top-lit-up-draft (TLUD) cookstove utilizes a gasification process similar to pyrolysis where the solid biomass fuels are heated within a oxygen-limited environment and the syngas are burned which reduces carbon content and particulate matter being introduced into the air. The new continuous-operation design is described to have features for: (1) safe addition of solid fuels during combustion of syngas, (2) removal of biochar at the primary air inlet to manage gasification location, and (3) temperature control of the cooksurface through adjustable exhaust paths. The designed cookstove is found to have a diameter to height ratio 0.42-0.47 in order to offer the cleanest burning of the biofuel. The cooking surface is experimentally studied and the thermal gradient is found for compressed wood pellets. Tracking of the coal-bed is studied as a function of time in order to better understand when additional fuel should be added to ensure constant cooking temperature and operation. Numerous exhaust paths explore the cookstove user’s ability to control the temperature contour of the cooksurface. Full article
Show Figures

Graphical abstract

Back to TopTop