Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline

Article Types

Countries / Regions

Search Results (2)

Search Parameters:
Keywords = comparative research flow for MADM

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
27 pages, 12735 KiB  
Article
Evaluation and Analysis of CFI Schemes with Different Length of Displaced Left-Turn Lanes with Entropy Method
by Binghong Pan, Shasha Luo, Jinfeng Ying, Yang Shao, Shangru Liu, Xiang Li and Jiaqi Lei
Sustainability 2021, 13(12), 6917; https://doi.org/10.3390/su13126917 - 19 Jun 2021
Cited by 11 | Viewed by 2669
Abstract
As an unconventional design to alleviate the conflict between left-turn and through vehicles, Continuous Flow Intersection (CFI) has obvious advantages in improving the sustainability of roadway. So far, the design manuals and guidelines for CFI are not enough sufficient, especially for the displaced [...] Read more.
As an unconventional design to alleviate the conflict between left-turn and through vehicles, Continuous Flow Intersection (CFI) has obvious advantages in improving the sustainability of roadway. So far, the design manuals and guidelines for CFI are not enough sufficient, especially for the displaced left-turn lane length of CFI. And the results of existing research studies are not operational, making it difficult to put CFI into application. To address this issue, this paper presents a methodological procedure for determination and evaluation of displaced left-turn lane length based on the entropy method considering multiple performance measures for sustainable transportation, including traffic efficiency index, environment effect index and fuel consumption. VISSIM and the surrogate safety assessment model (SSAM) were used to simulate the operational and safety performance of CFI. The multi-attribute decision-making method (MADM) based on an entropy method was adopted to determine the suitability of the CFI schemes under different traffic demand patterns. Finally, the procedure was applied to a typical congested intersection of the arterial road with heavy traffic volume and high left-turn ratio in Xi’an, China, the results showed the methodological procedure is reasonable and practical. According to the results, for the studied intersection, when the Volume-to-Capacity ratio (V/C) in the westbound and eastbound lanes is less than 0.5, the length of the displaced left-turn lanes can be selected in the range of 80 to 170 m. Otherwise, other solutions should be considered to improve the traffic efficiency. The simulation results of the case showed CFI can significantly improve the traffic efficiency. In the best case, compared with the conventional intersection, the number of vehicles increases by 13%, delay, travel time, number of stops, CO emission, and fuel consumption decrease by 41%, 29%, 25%, 17%, and 17%, respectively. Full article
(This article belongs to the Special Issue Green Roadways and Management Sustainability)
Show Figures

Figure 1

23 pages, 336 KiB  
Article
Rank-Based Comparative Research Flow Benchmarking the Effectiveness of AHP–GTMA on Aiding Decisions of Shredder Selection by Reference to AHP–TOPSIS
by Zheng-Yun Zhuang, Chang-Ching Lin, Chih-Yung Chen and Chia-Rong Su
Appl. Sci. 2018, 8(10), 1974; https://doi.org/10.3390/app8101974 - 18 Oct 2018
Cited by 15 | Viewed by 3299
Abstract
The AHP–GTMA (analytic hierarchy process and graph theory and matrix approach) has been applied to select the best paper shredder before a company was making a bulk purchase order. However, there is a question as to whether one such relatively recent approach is [...] Read more.
The AHP–GTMA (analytic hierarchy process and graph theory and matrix approach) has been applied to select the best paper shredder before a company was making a bulk purchase order. However, there is a question as to whether one such relatively recent approach is effective to aid the selection decision problems in industrial/commercial practice. In this paper, a novel multi-measure, rank-based comparative research flow is proposed. The real decision problem case mentioned above is solved using the AHP–GTMA and the AHP–TOPSIS methods, respectively, with relevant datasets sourced. Several measures in the proposed flow, i.e., the arithmetical, geometrical, or even statistical ones, are multiplexed and used to validate the similarity between the rank order vectors (ROVs) (and thus between the final preferential orders determined over the alternatives) that are obtained using these two different methods. While AHP–TOPSIS is a confident multi-attribute decision-making (MADM) approach which has been successfully applied to many other fields, the similarity validated between these individual results using the proposed method is used to confirm the efficacy of the AHP–GTMA approach and to determine its applicability in practice. In addition, along with this study, some contributable points are also rendered for implementing the decision models, e.g., the optimized recursive implementation in R to compute the permanent value of a square ASAM (alternative selection attribute matrix, which is the computational basis required by AHP–GTMA) of any dimension. The proposed methodological flow to confirm the similarity based on the ordinal rank information is not only convenient in operational practice with ubiquitous tool supports (e.g., the vector-based R statistical platform), but also generalizable (to verify between another pair of results obtained using any other MADM methods). This gives options for future research. Full article
(This article belongs to the Special Issue Selected Papers from IEEE ICICE 2018..)
Back to TopTop