Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (2)

Search Parameters:
Keywords = colloidal astaxanthin

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 4988 KiB  
Article
Preparation of Oxidized Starch/β-Lactoglobulin Complex Particles Using Microfluidic Chip for the Stabilization of Astaxanthin Emulsion
by Tianxing Wang, Lulu Zhang, Ling Chen and Xiaoxi Li
Foods 2022, 11(19), 3078; https://doi.org/10.3390/foods11193078 - 4 Oct 2022
Cited by 2 | Viewed by 2593
Abstract
Here, we designed an oxidized starch/β-lactoglobulin (OS/β-lg) complex colloidal particle using a dual-channel microfluidic chip for the stabilization of astaxanthin emulsion. The effect of the mixing ratio, pH, and the degree of substitution (DS) of the oxidized starch on the formation of OS/β-lg [...] Read more.
Here, we designed an oxidized starch/β-lactoglobulin (OS/β-lg) complex colloidal particle using a dual-channel microfluidic chip for the stabilization of astaxanthin emulsion. The effect of the mixing ratio, pH, and the degree of substitution (DS) of the oxidized starch on the formation of OS/β-lg complex particles was investigated in detail. The optimal complexation occurred at a pH of 3.6, a mixing ratio of 2:10, and a DS of 0.72%, giving an ideal colloidal particle with near-neutral wettability. With this optimum agent, the astaxanthin-loaded oil-in-water emulsions were successfully prepared. The obtained emulsions showed the typical non-Newton fluid behavior, and the rheological data met the Herschel–Bulkley model. The microscopic images confirmed the dense adsorption of the particle on the oil/water interface. In vitro release and stability studies demonstrated this compact layer contributed to the controlled-release and excellent stability of astaxanthin emulsions facing heat, ultraviolet, and oxidative intervention. This work suggests the potential of microfluidics for the production of food-grade solid emulsifiers. Full article
Show Figures

Graphical abstract

13 pages, 1517 KiB  
Article
The Astaxanthin Aggregation Pattern Greatly Influences Its Antioxidant Activity: A Comparative Study in Caco-2 Cells
by Mingqin Dai, Chunjun Li, Zhao Yang, Zhe Sui, Jing Li, Ping Dong and Xingguo Liang
Antioxidants 2020, 9(2), 126; https://doi.org/10.3390/antiox9020126 - 2 Feb 2020
Cited by 36 | Viewed by 5951
Abstract
Astaxanthin is an excellent antioxidant that can form unstable aggregates in biological or artificial systems. The changes of astaxanthin properties caused by molecular aggregation have gained much attention recently. Here, water-dispersible astaxanthin H- and J-aggregates were fabricated and stabilized by a natural DNA/chitosan [...] Read more.
Astaxanthin is an excellent antioxidant that can form unstable aggregates in biological or artificial systems. The changes of astaxanthin properties caused by molecular aggregation have gained much attention recently. Here, water-dispersible astaxanthin H- and J-aggregates were fabricated and stabilized by a natural DNA/chitosan nanocomplex (respectively noted as H-ADC and J-ADC), as evidenced by ultraviolet and visible spectrophotometry, Fourier transform infrared spectroscopy, and Raman spectroscopy. Compared with J-ADC, H-ADC with equivalent astaxanthin loading capacity and encapsulation efficiency showed smaller particle size and similar zeta potential. To explore the antioxidant differences between astaxanthin H- and J-aggregates, H-ADC and J-ADC were subjected to H2O2-pretreated Caco-2 cells. Compared with astaxanthin monomers and J-aggregates, H-aggregates showed a better cytoprotective effect by promoting scavenging of intracellular reactive oxygen species. Furthermore, in vitro 1,1-diphenyl-2-picrylhydrazyl and hydroxyl free radical scavenging studies confirmed a higher efficiency of H-aggregates than J-aggregates or astaxanthin monomers. These findings give inspiration to the precise design of carotenoid aggregates for efficient utilization. Full article
Show Figures

Figure 1

Back to TopTop