Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (2)

Search Parameters:
Keywords = coded aperture snapshot spectral imager (CASSI)

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 1979 KiB  
Article
Multi-Scale CNN-Transformer Dual Network for Hyperspectral Compressive Snapshot Reconstruction
by Kaixuan Huang, Yubao Sun and Quan Gu
Appl. Sci. 2023, 13(23), 12795; https://doi.org/10.3390/app132312795 - 29 Nov 2023
Cited by 1 | Viewed by 1576
Abstract
Coded aperture snapshot spectral imaging (CASSI) is a new imaging mode that captures the spectral characteristics of materials in real scenes. It encodes three-dimensional spatial–spectral data into two-dimensional snapshot measurements, and then recovers the original hyperspectral image (HSI) through a reconstruction algorithm. Hyperspectral [...] Read more.
Coded aperture snapshot spectral imaging (CASSI) is a new imaging mode that captures the spectral characteristics of materials in real scenes. It encodes three-dimensional spatial–spectral data into two-dimensional snapshot measurements, and then recovers the original hyperspectral image (HSI) through a reconstruction algorithm. Hyperspectral data have multi-scale coupling correlations in both spatial and spectral dimensions. Designing a network architecture that effectively represents this coupling correlation is crucial for enhancing reconstruction quality. Although the convolutional neural network (CNN) can effectively represent local details, it cannot capture long-range correlation well. The Transformer excels at representing long-range correlation within the local window, but there are also issues of over-smoothing and loss of details. In order to cope with these problems, this paper proposes a dual-branch CNN-Transformer complementary module (DualCT). Its CNN branch mainly focuses on learning the spatial details of hyperspectral images, and the Transformer branch captures the global correlation between spectral bands. These two branches are linked through bidirectional interactions to promote the effective fusion of spatial–spectral features of the two branches. By utilizing characteristics of CASSI imaging, the residual mask attention is also designed and encapsulated in the DualCT module to refine the fused features. Furthermore, by using the DualCT module as a basic component, a multi-scale encoding and decoding model is designed to capture multi-scale spatial–spectral features of hyperspectral images and achieve end-to-end reconstruction. Experiments show that the proposed network can effectively improve reconstruction quality, and ablation experiments also verify the effectiveness of our network design. Full article
Show Figures

Figure 1

20 pages, 7659 KiB  
Article
Design of a Tunable Snapshot Multispectral Imaging System through Ray Tracing Simulation
by Mengjia Ding, Peter WT Yuen, Jonathan Piper, Peter Godfree, Ayan Chatterjee, Usman Zahidi, Senthurran Selvagumar, David James and Mark Richardson
J. Imaging 2019, 5(1), 9; https://doi.org/10.3390/jimaging5010009 - 5 Jan 2019
Cited by 5 | Viewed by 8012
Abstract
Research on snapshot multispectral imaging has been popular in the remote sensing community due to the high demands of video-rate remote sensing system for various applications. Existing snapshot multispectral imaging techniques are mainly of a fixed wavelength type, which limits their practical usefulness. [...] Read more.
Research on snapshot multispectral imaging has been popular in the remote sensing community due to the high demands of video-rate remote sensing system for various applications. Existing snapshot multispectral imaging techniques are mainly of a fixed wavelength type, which limits their practical usefulness. This paper describes a tunable multispectral snapshot system by using a dual prism assembly as the dispersion element of the coded aperture snapshot spectral imagers (CASSI). Spectral tuning is achieved by adjusting the air gap displacement of the dual prism assembly. Typical spectral shifts of about 1 nm at 400 nm and 12 nm at 700 nm wavelength have been achieved in the present design when the air-gap of the dual prism is changed from 4.24 mm to 5.04 mm. The paper outlines the optical designs, the performance, and the pros and cons of the dual-prism CASSI (DP-CASSI) system. The performance of the system is illustrated by TraceProTM ray tracing, to allow researchers in the field to repeat or to validate the results presented in this paper. Full article
Show Figures

Figure 1

Back to TopTop