Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (3)

Search Parameters:
Keywords = clevis-grip tensile tests

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
12 pages, 3012 KiB  
Article
Simplified Procedure to Determine the Cohesive Material Law of Fiber-Reinforced Cementitious Matrix (FRCM)–Substrate Joints
by Francesco Focacci, Tommaso D’Antino and Christian Carloni
Materials 2024, 17(7), 1627; https://doi.org/10.3390/ma17071627 - 2 Apr 2024
Cited by 5 | Viewed by 1382
Abstract
Fiber-reinforced cementitious matrix (FRCM) composites have been largely used to strengthen existing concrete and masonry structures in the last decade. To design FRCM-strengthened members, the provisions of the Italian CNR-DT 215 (2018) or the American ACI 549.4R and 6R (2020) guidelines can be [...] Read more.
Fiber-reinforced cementitious matrix (FRCM) composites have been largely used to strengthen existing concrete and masonry structures in the last decade. To design FRCM-strengthened members, the provisions of the Italian CNR-DT 215 (2018) or the American ACI 549.4R and 6R (2020) guidelines can be adopted. According to the former, the FRCM effective strain, i.e., the composite strain associated with the loss of composite action, can be obtained by combining the results of direct shear tests on FRCM–substrate joints and of tensile tests on the bare reinforcing textile. According to the latter, the effective strain can be obtained by testing FRCM coupons in tension, using the so-called clevis-grip test set-up. However, the complex bond behavior of the FRCM cannot be fully captured by considering only the effective strain. Thus, a cohesive approach has been used to describe the stress transfer between the composite and the substrate and cohesive material laws (CMLs) with different shapes have been proposed. The determination of the CML associated with a specific FRCM–substrate joint is fundamental to capture the behavior of the FRCM-strengthened member and should be determined based on the results of experimental bond tests. In this paper, a procedure previously proposed by the authors to calibrate the CML from the load response obtained by direct shear tests of FRCM–substrate joints is applied to different FRCM composites. Namely, carbon, AR glass, and PBO FRCMs are considered. The results obtained prove that the procedure allows to estimate the CML and to associate the idealized load response of a specific type of FRCM to the corresponding CML. The estimated CML can be used to determine the onset of debonding in FRCM–substrate joints, the crack number and spacing in FRCM coupons, and the locations where debonding occurs in FRCM-strengthened members. Full article
(This article belongs to the Special Issue Advances in Sustainable Inorganic Matrix Composites for Construction)
Show Figures

Figure 1

14 pages, 3404 KiB  
Article
Tensile Behavior of Basalt Textile Reinforced Concrete: Effect of Test Setups and Textile Ratios
by Chenglin Wan, Jiyang Wang, Shubin Wang, Xiaohua Ji, Yu Peng and Hongmei Zhang
Materials 2022, 15(24), 8975; https://doi.org/10.3390/ma15248975 - 15 Dec 2022
Cited by 3 | Viewed by 1916
Abstract
The clevis-grip tensile test is usually employed to evaluate the mechanical properties of textile reinforced concrete (TRC) composites, which is actually a bond test and is unsuitable for determining reliable design parameters. Thus, the clevis-grip tensile test needs further improvement to obtain foreseeable [...] Read more.
The clevis-grip tensile test is usually employed to evaluate the mechanical properties of textile reinforced concrete (TRC) composites, which is actually a bond test and is unsuitable for determining reliable design parameters. Thus, the clevis-grip tensile test needs further improvement to obtain foreseeable results concerning TRC tensile behavior. This paper presents the experimental results of twenty-one tension tests performed on basalt TRC (BTRC) thin plates with different test setups, i.e., clevis-grip and improved clevis-grip, and with different textile ratios. The influences of test setups and textile ratios on crack patterns, failure mode, and tensile stress-strain curves with characteristic parameters were analyzed in depth to judge the feasibility of the new test setup. The results indicated that with the new test setup, BTRC composites exhibited textile rupture at failure; in addition, multi-cracks occurred to the BTRC composites as the textile ratio exceeded 1.44%. In this case, the obtained results relied on textile properties, which can be considered reliable for design purposes. The modified ACK model with a textile utilization rate of 50% provided accurate predictions for the tensile stress-strain behavior of the BTRC composite derived from the improved test setup. The proposed test setup enables the adequate utilization of BTRC composite and the reliability of obtained results related to the occurrence of textile rupture; nevertheless, further work is required to better understand the key parameters affecting the textile utilization rate, such as the strength of the concrete matrix. Full article
(This article belongs to the Special Issue Multi-Scale Structural Characterization of Cement-Based Composites)
Show Figures

Figure 1

19 pages, 7216 KiB  
Article
Clevis-Grip Tensile Tests on Basalt, Carbon and Steel FRCM Systems Realized with Customized Cement-Based Matrices
by Dario De Domenico, Natale Maugeri, Paolo Longo, Giuseppe Ricciardi, Giuseppe Gullì and Luigi Calabrese
J. Compos. Sci. 2022, 6(9), 275; https://doi.org/10.3390/jcs6090275 - 17 Sep 2022
Cited by 10 | Viewed by 2659
Abstract
The tensile properties of fabric-reinforced cementitious matrix (FRCM) composites are experimentally investigated through clevis-grip tensile tests (according to AC434 provisions) on FRCM coupons realized with customized (ad hoc developed in this paper) cement-based matrices. The tested FRCM coupons are reinforced with basalt, carbon, [...] Read more.
The tensile properties of fabric-reinforced cementitious matrix (FRCM) composites are experimentally investigated through clevis-grip tensile tests (according to AC434 provisions) on FRCM coupons realized with customized (ad hoc developed in this paper) cement-based matrices. The tested FRCM coupons are reinforced with basalt, carbon, or steel fabrics, and are prepared with three different matrices: one-component mortar incorporating dispersible copolymer powders of vinyl acetate and ethylene (matrices A and B) and two-component mortar with carboxylated styrene–butadiene copolymer liquid resin (matrix C). This has made it possible to investigate the mechanical compatibility between different mortar matrices and fabrics and the resulting tensile properties of FRCM composites in the uncracked, cracking, and fully cracked phases. Experimental results are critically analyzed in terms of stress–strain curves and failure mechanisms comparatively for the analyzed FRCM systems. It has been shown that the matrix B exhibits a good compatibility with the basalt pre-impregnated fabric, while the matrix C appears to be the most suitable candidate to optimize the interfacial stress transfer at the fiber–matrix interface for all fabrics, thus exalting the mechanical performances in terms of tensile strength and ultimate strain. The results of this experimental program can be useful for designing optimized mortar mixes aimed at realizing novel FRCM composites or at improving existing FRCM systems by suitably accounting for compatibility behavior and slippage at the fabric–matrix interface. Full article
(This article belongs to the Section Fiber Composites)
Show Figures

Figure 1

Back to TopTop