Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (3)

Search Parameters:
Keywords = clay aquiclude

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 3984 KiB  
Article
Utilizing Hydrophobic Sand to Construct an Air-Permeable Aquiclude to Enhance Rice Yield and Lodging Resistance
by Xiaoyan Ma, Jing Wu, Yuming Su, Shengyi Qin and Francesco Pilla
Agronomy 2024, 14(9), 2085; https://doi.org/10.3390/agronomy14092085 - 12 Sep 2024
Cited by 2 | Viewed by 1269
Abstract
Global climate change and persistent droughts lead to soil desertification, posing significant challenges to food security. Desertified lands, characterized by high permeability, struggle to retain water, thereby hindering ecological restoration. Sand, a natural resource abundant in deserts, inspired our proposal to design hydrophobic [...] Read more.
Global climate change and persistent droughts lead to soil desertification, posing significant challenges to food security. Desertified lands, characterized by high permeability, struggle to retain water, thereby hindering ecological restoration. Sand, a natural resource abundant in deserts, inspired our proposal to design hydrophobic sand and construct Air-permeable Aquicludes (APAC) using this material. This approach aims to address issues related to the ecological restoration of desertified lands, food security, and the utilization of sand resources. Reclamation of desertified land and sandy areas can simultaneously address ecological restoration and ensure food security, with soil reconstruction being a critical step. This study investigated the effects of constructing an Air-permeable Aquiclude (APAC) using hydrophobic sand on rice yield and lodging resistance, using clay aquitard (CAT) and plastic aquiclude (PAC) as control groups. The APAC enhanced soil oxygen content, increased internode strength, and improved vascular bundle density, substantially reducing the lodging index and increasing yield. This research finds that the APAC (a) increased internode outer diameter, wall thickness, fresh weight, and filling degree; (b) enhanced the vascular bundle area by 11.11% to 27.66% and increased density; (c) reduced the lodging index by 37.54% to 36.93% (p < 0.01); and (d) increased yield to 8.09 t·hm−2, a rise of 12.05% to 14.59% (p < 0.05), showing a negative correlation with lodging index. These findings suggest that APAC has very good potential for desertified land reclamation and food security. In conclusion, the incorporation of hydrophobic sand in APAC construction considerably strengthens rice stem lodging resistance and increases yield, demonstrating considerable application potential for the reclamation of desertified and sandy land and ensuring food security. Full article
(This article belongs to the Special Issue Transforming AgriFood Systems under a Changing Climate)
Show Figures

Figure 1

16 pages, 5513 KiB  
Article
Simulation and On-Site Detection of the Failure Characteristics of Overlying Strata under the Mining Disturbance of Coal Seams with Thin Bedrock and Thick Alluvium
by Qunlei Zhang, Jianping Guo, Xiaowei Lu, Kunpeng Ding, Ruifu Yuan and Decai Wang
Sensors 2024, 24(6), 1748; https://doi.org/10.3390/s24061748 - 8 Mar 2024
Cited by 3 | Viewed by 1244
Abstract
When mining deep coal seams with thin bedrock and thick alluvium, the collapse and fracture of thin bedrock layers may cause geological disasters, such as water inrush and sand inrush of the mining face. Comprehensively obtaining the response data of coal mining and [...] Read more.
When mining deep coal seams with thin bedrock and thick alluvium, the collapse and fracture of thin bedrock layers may cause geological disasters, such as water inrush and sand inrush of the mining face. Comprehensively obtaining the response data of coal mining and reasonably analyzing the failure characteristics of overlying strata are helpful in guiding safe production. In this study, the caving zone heights of overlying strata are obtained by field detection during layered mining. Then, the caving zone heights during the once-full-height mining are evaluated by theoretical analysis. Further, the force and failure characteristics of coal–rock structures under different mining conditions are compared by the simulation detection and analysis. Finally, the results of on-site observation, theoretical analysis, and simulation detection are compared and discussed, and an optimized mining technology is proposed to ensure safe mining. The research shows the caving zone heights of on-site and simulation detections are, respectively, 14.65 m and 13.5 m during bottom-layer mining, which is larger than the caving zone heights of the top-layer coal mining. During once-full-height mining, the maximum caving zone height of simulation detection is 21 m, which is in between two standard results. For the mechanical responses of an aquiclude clay layer under thick loose alluvium, the maximum disturbance displacement of clay aquiclude is 5.8 m during layered mining, which is slightly larger than the disturbance displacement of once full-height mining; however, the maximum stress of the clay layer is 25 MPa during once-full-height mining, which is larger than the maximum stress of clay layer during layered mining. For the clay aquiclude failure, the clay layer during layered mining is in the deflection deformation area, and there is no obvious fracture structure to inrush the water and sand of thick loose alluvium; however, the clay layer during once-full-height mining is prone to produce obvious fracture structure. Therefore, the layered mining technology can effectively reduce and prevent the water/sand inrush disaster of mining working face. Full article
Show Figures

Figure 1

13 pages, 4989 KiB  
Article
Physical Simulation on Weakly Cemented Aquiclude Stability due to Underground Coal Mining
by Shizhong Zhang, Gangwei Fan, Dongsheng Zhang, Tao Luo, Xue Guo, Siqin Dun and Hua Chen
Minerals 2022, 12(12), 1494; https://doi.org/10.3390/min12121494 - 23 Nov 2022
Cited by 5 | Viewed by 1694
Abstract
In northwest China, underground mining is frequently conducted in weakly cemented rock environments, including the aquiclude that protects the aquifer from dewatering. In this context, understanding the aquiclude responses to longwall mining is significant for assessing the reliability of water-conserved mining in the [...] Read more.
In northwest China, underground mining is frequently conducted in weakly cemented rock environments, including the aquiclude that protects the aquifer from dewatering. In this context, understanding the aquiclude responses to longwall mining is significant for assessing the reliability of water-conserved mining in the weakly cemented rock environment. Taking the Jurassic and Paleogene coal measure geology in Yili Mine in Xinjiang Province, China, as a case study, the paper conducted a laboratorial three-dimensional simulation by configuring a longwall operation and induced groundwater migration. The study analysed the aquiclude depressurisation and revealed the aquiclude stability in response to longwall mining. The results indicated that the aquiclude had a significant plastic strain and self-healing ability in the ground depressurisation condition. The aquiclude experienced tension and then compression, and, accordingly, fracture initiation, propagation, and convergence, during which the aquiclude had significant bending deformation. On the aquiclude horizon, tensile fracturing dominated above the set-up and longwall stop positions. The self-healing behaviour was correlated to the high content of clay minerals and disintegration proneness. The simulation results had a good agreement with field measurements, suggesting that the aquiclude had a satisfactory water-resisting ability and that the simulation results were practically reliable. Full article
(This article belongs to the Special Issue Green Mining of Coal Mine in China)
Show Figures

Figure 1

Back to TopTop