Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (1)

Search Parameters:
Keywords = classical MN (CLMN)

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
12 pages, 7051 KB  
Review
MS/MS-Based Molecular Networking: An Efficient Approach for Natural Products Dereplication
by Guo-Fei Qin, Xiao Zhang, Feng Zhu, Zong-Qing Huo, Qing-Qiang Yao, Qun Feng, Zhong Liu, Gui-Min Zhang, Jing-Chun Yao and Hong-Bao Liang
Molecules 2023, 28(1), 157; https://doi.org/10.3390/molecules28010157 - 24 Dec 2022
Cited by 37 | Viewed by 11480
Abstract
Natural products (NPs) have historically played a primary role in the discovery of small-molecule drugs. However, due to the advent of other methodologies and the drawbacks of NPs, the pharmaceutical industry has largely declined in interest regarding the screening of new drugs from [...] Read more.
Natural products (NPs) have historically played a primary role in the discovery of small-molecule drugs. However, due to the advent of other methodologies and the drawbacks of NPs, the pharmaceutical industry has largely declined in interest regarding the screening of new drugs from NPs since 2000. There are many technical bottlenecks to quickly obtaining new bioactive NPs on a large scale, which has made NP-based drug discovery very time-consuming, and the first thorny problem faced by researchers is how to dereplicate NPs from crude extracts. Remarkably, with the rapid development of omics, analytical instrumentation, and artificial intelligence technology, in 2012, an efficient approach, known as tandem mass spectrometry (MS/MS)-based molecular networking (MN) analysis, was developed to avoid the rediscovery of known compounds from the complex natural mixtures. Then, in the past decade, based on the classical MN (CLMN), feature-based MN (FBMN), ion identity MN (IIMN), building blocks-based molecular network (BBMN), substructure-based MN (MS2LDA), and bioactivity-based MN (BMN) methods have been presented. In this paper, we review the basic principles, general workflow, and application examples of the methods mentioned above, to further the research and applications of these methods. Full article
(This article belongs to the Special Issue Natural Products: Phytochemical Analysis & Pharmacological Evaluation)
Show Figures

Graphical abstract

Back to TopTop