Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (3)

Search Parameters:
Keywords = citraconic anhydride modification

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
23 pages, 8144 KB  
Article
Altering the Properties of Laccases from Ensifer meliloti (Sinorhizobium meliloti) and Cerrena unicolor by Chemical Modifications of Proteins
by Anna Pawlik, Radosław Drozd and Grzegorz Janusz
Biomolecules 2025, 15(4), 531; https://doi.org/10.3390/biom15040531 - 4 Apr 2025
Viewed by 1176
Abstract
Due to their catalytic performance, laccases constitute one of the most promising groups of enzymes for potential applications in modern biotechnology. In this study, we aimed to chemically modify Ensifer meliloti (Sinorhizobium meliloti) and Cerrena unicolor laccase and comparatively characterize the [...] Read more.
Due to their catalytic performance, laccases constitute one of the most promising groups of enzymes for potential applications in modern biotechnology. In this study, we aimed to chemically modify Ensifer meliloti (Sinorhizobium meliloti) and Cerrena unicolor laccase and comparatively characterize the structures of both enzymes. The most characteristic feature was the spatial localization of lysine residues, predominantly positioned distal to the active site region for both compared enzymes. The solvent-accessible surface area (SASA) analysis showed that bacterial laccase was characterized by a larger hydrophobic SASA than the fungal enzyme. The pKa prediction identified only one Lys in the E. meliloti laccase structure susceptible to modification. Modifications were achieved by using mono- and bifunctional crosslinking agents, and glycosylations were also performed. The degree of protein modification ranged from 0% for glucose- and galactose-modified E. meliloti laccase and citraconic anhydride-modified (CA) C. unicolor laccase to 62.94% for the palmitic acid N-hydroxysuccinimide ester-modified E. meliloti enzyme. The stability of covalently modified laccases over a wide pH and temperature ranges and in the presence of inhibitors was investigated. Protein modifications with polymeric sucrose (PS) and ethylene glycol bis-(succinimidyl succinate) (EGNHS) significantly increased the activity of the bacterial and fungal laccases by 15 and 19%, respectively. Although pH optima remained relatively unchanged by modifications, certain variants, especially CA-modified bacterial protein and EGNHS-modified C. unicolor enzyme, exhibited improved stability at near-neutral pH (6–7). Modification of the bacterial enzyme with glutaraldehyde-carbodiimide (GA-CDI-ver) and of the fungal enzyme with CA was the most effective in improving its thermal stability. Chemical modifications using GA, CDI, GA-CDI, and PS allowed E. meliloti L 3.8 laccase to retain full activity in the presence of 5 mM NaI, whereas CA-, PS-, and EGNHS-modified C. unicolor variants retained their activity even at elevated NaCl concentrations. The results clearly demonstrate that the outcome of chemical modifications is closely linked to enzyme-specific structural features and that selecting an appropriate modification strategy is critical to achieving the desired effect. Full article
(This article belongs to the Special Issue Recent Advances in Laccases and Laccase-Based Bioproducts)
Show Figures

Graphical abstract

10 pages, 2783 KB  
Article
Direct Cytosolic Delivery of Citraconylated Proteins
by Ritabrita Goswami, Victor Lehot, Yağız Anıl Çiçek, Harini Nagaraj, Taewon Jeon, Terry Nguyen, Stefano Fedeli and Vincent M. Rotello
Pharmaceutics 2023, 15(1), 218; https://doi.org/10.3390/pharmaceutics15010218 - 8 Jan 2023
Cited by 10 | Viewed by 3355
Abstract
Current intracellular protein delivery strategies face the challenge of endosomal entrapment and consequent degradation of protein cargo. Methods to efficiently deliver proteins directly to the cytosol have the potential to overcome this hurdle. Here, we report the use of a straightforward approach of [...] Read more.
Current intracellular protein delivery strategies face the challenge of endosomal entrapment and consequent degradation of protein cargo. Methods to efficiently deliver proteins directly to the cytosol have the potential to overcome this hurdle. Here, we report the use of a straightforward approach of protein modification using citraconic anhydride to impart an overall negative charge on the proteins, enabling them to assemble with positively charged nano vectors. This strategy uses anhydride-modified proteins to electrostatically form polymer–protein nanocomposites with a cationic guanidinium-functionalized polymer. These supramolecular self-assemblies demonstrated the efficient cytosolic delivery of modified proteins through a membrane fusion-like mechanism. This approach was validated on five cell lines and seven proteins as cargo. Retention of protein function was confirmed through efficient cell killing via the intracellular enzymatic activity of RNase A. This platform provides a versatile, straightforward, and single-step method of protein modification and efficient direct cytosolic protein delivery. Full article
(This article belongs to the Special Issue Frontiers in the Application of Nanomaterials in Drug Delivery)
Show Figures

Graphical abstract

12 pages, 1571 KB  
Article
A Fluorogenic Assay: Analysis of Chemical Modification of Lysine and Arginine to Control Proteolytic Activity of Trypsin
by Kunal N. More, Tae-Hwan Lim, Julie Kang and Dong-Jo Chang
Molecules 2021, 26(7), 1975; https://doi.org/10.3390/molecules26071975 - 31 Mar 2021
Cited by 4 | Viewed by 4194
Abstract
The chemical modification of amino acids plays an important role in the modulation of proteins or peptides and has useful applications in the activation and stabilization of enzymes, chemical biology, shotgun proteomics, and the production of peptide-based drugs. Although chemoselective modification of amino [...] Read more.
The chemical modification of amino acids plays an important role in the modulation of proteins or peptides and has useful applications in the activation and stabilization of enzymes, chemical biology, shotgun proteomics, and the production of peptide-based drugs. Although chemoselective modification of amino acids such as lysine and arginine via the insertion of respective chemical moieties as citraconic anhydride and phenyl glyoxal is important for achieving desired application objectives and has been extensively reported, the extent and chemoselectivity of the chemical modification of specific amino acids using specific chemical agents (blocking or modifying agents) has yet to be sufficiently clarified owing to a lack of suitable assay methodologies. In this study, we examined the utility of a fluorogenic assay method, based on a fluorogenic tripeptide substrate (FP-AA1-AA2-AA3) and the proteolytic enzyme trypsin, in determinations of the extent and chemoselectivity of the chemical modification of lysine or arginine. As substrates, we used two fluorogenic tripeptide probes, MeRho-Lys-Gly-Leu(Ac) (lysine-specific substrate) and MeRho-Arg-Gly-Leu(Ac) (arginine-specific substrate), which were designed, synthesized, and evaluated for chemoselective modification of specific amino acids (lysine and arginine) using the fluorogenic assay. The results are summarized in terms of half-maximal inhibitory concentrations (IC50) for the extent of modification and ratios of IC50 values (IC50arginine/IC50lysine and IC50lysine/IC50arginine) as a measure of the chemoselectivity of chemical modification for amino acids lysine and arginine. This novel fluorogenic assay was found to be rapid, precise, and reproducible for determinations of the extent and chemoselectivity of chemical modification. Full article
(This article belongs to the Special Issue Fluorescence Chemosensors: Design, Synthesis, and Application)
Show Figures

Figure 1

Back to TopTop