Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (6)

Search Parameters:
Keywords = chromite placer

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
13 pages, 10049 KiB  
Article
Paragenetic Association of Platinum and Gold Minerals in Placers of the Anabar River in the Northeast of the Siberian Platform
by Alexander Okrugin and Boris Gerasimov
Minerals 2023, 13(1), 96; https://doi.org/10.3390/min13010096 - 7 Jan 2023
Cited by 6 | Viewed by 2715
Abstract
Areal placers of diamond and precious metals (platinum and gold) of unknown origin are widespread in the Anabar River basin on the northeastern part of the Siberian Platform. This article discusses the typomorphic features of palladium gold (porpezite) and ferroan platinum, which, in [...] Read more.
Areal placers of diamond and precious metals (platinum and gold) of unknown origin are widespread in the Anabar River basin on the northeastern part of the Siberian Platform. This article discusses the typomorphic features of palladium gold (porpezite) and ferroan platinum, which, in addition to fragmented individual grains, sometimes form close growths, which indicates their obvious genetic relationship. This can be used to delimit the primary sources of commercial components of complex placers by their genetic types. The composition of minerals was determined on a Camebax-Micro (Cameca, France) microprobe analyzer, and their microstructural relationships were studied using the scanning microscope JSM-6480LV JEOL. Determination of the structure and parameters of elementary lattices of minerals was carried out on the D8 Discover diffractometer. According to microprobe analysis, the Pd content in porpezite ranges from 0.73% to 12.83%, Ag does not exceed 2.75% and Cu reaches 3–4%. Considering the composition, such a gold–platinum mineral association from placers of the Anabar river is close to precious metals from placers of the Gulinsky massif, as well as Au–PGE ore occurrences related to ultramafic–mafic intrusions of other regions of the world. Complex gold–platinum-metal mineralizations are usually closely related to parent rocks and are often observed in sulfide and chromite ores of layered ultramafic–mafic intrusions with complex metasomatic and hydrothermal transformations. It is shown that in such cases gold and platinum form a magmatogenic paragenesis of minerals that coexist until the separation of hydrothermal solutions from magma, which, as a rule, transports Au and Ag with a small fraction of PGE from the fluid-ore-magmatic system in accordance with the model of the formation of gold–porphyry deposits. Within the Anabar diamond-bearing region, according to modern geophysical data, a significant number of local gravimagnetic anomalies associated with the presence of intrusive massifs of basic and alkaline-ultrabasic rocks in the cover and within the basement have been identified. This allows us to assume that the buried parent rocks of the Anabar Au–Pt placers may be located in both the Precambrian and Phanerozoic strata. Full article
(This article belongs to the Special Issue Native Gold as a Specific Indicator Mineral for Gold Deposits)
Show Figures

Figure 1

31 pages, 10325 KiB  
Article
Chromian Spinels from Kazanian-Stage Placers in the Southern Pre-Urals, Bashkiria, Russia: Morphological and Chemical Features and Evidence for Provenance
by Ildar R. Rakhimov, Dmitri E. Saveliev, Mikhail A. Rassomakhin and Aidar A. Samigullin
Minerals 2022, 12(7), 849; https://doi.org/10.3390/min12070849 - 1 Jul 2022
Cited by 5 | Viewed by 3021
Abstract
Six minor alluvial chromite placers (Kolkhoznyi Prud, Verkhne-Yaushevo, Sukhoy Izyak, Bazilevo, Novomikhaylovka, Kiryushkino) and one major littoral placer (Sabantuy) were found in sandy sediments of the Kazanian stage of the Permian System (Late Roadian and Wordian Stages) in the Southern Pre-Urals. It is [...] Read more.
Six minor alluvial chromite placers (Kolkhoznyi Prud, Verkhne-Yaushevo, Sukhoy Izyak, Bazilevo, Novomikhaylovka, Kiryushkino) and one major littoral placer (Sabantuy) were found in sandy sediments of the Kazanian stage of the Permian System (Late Roadian and Wordian Stages) in the Southern Pre-Urals. It is shown that the morphological features of chromian spinels are diverse, which is not evidence of the heterogeneity of the source. The bulk chemical composition of chromian spinels from all placers is similar and generally correlates with compositions of chromian spinels from the Kraka ophiolitic complex in the Southern Urals. The morphological diversity of grains, varied chemical composition and presence of melt inclusions in Ti-high octahedral grains of chromian spinels comply with the ophiolitic nature of the source. Thus, there is no need to refer to other sources for chromite ores but ophiolitic. The new placers expand the dissemination area of chromite-bearing deposits on the east edge of the East-European Platform and offer a prospect to discover new placers. Full article
(This article belongs to the Section Mineral Deposits)
Show Figures

Figure 1

31 pages, 11043 KiB  
Article
Chromite Paleoplacer in the Permian Sediments at the East Edge of the East European Platform: Composition and Potential Sources
by Ildar R. Rakhimov, Evgenii V. Pushkarev and Irina A. Gottman
Minerals 2021, 11(7), 691; https://doi.org/10.3390/min11070691 - 27 Jun 2021
Cited by 5 | Viewed by 3566
Abstract
A chromite occurrence called the Sabantuy paleoplacer was discovered in the Southern Pre-Ural region, at the east edge of the East-European Platform in the transitional zone to the Ural Foredeep. A ca. 1 m-thick chromite-bearing horizon is traced at a depth of 0.7–1.5 [...] Read more.
A chromite occurrence called the Sabantuy paleoplacer was discovered in the Southern Pre-Ural region, at the east edge of the East-European Platform in the transitional zone to the Ural Foredeep. A ca. 1 m-thick chromite-bearing horizon is traced at a depth of 0.7–1.5 m from the earth’s surface for the area of ca. 15,000 m2. The chromspinel content in sandstones reaches 30–35%, maximum values of Cr2O3 are 16–17 wt.%. The grain size of detrital chromspinel ranges from 0.15 to 0.25 mm. Subangular octahedral crystals dominate; rounded grains and debris are rare. The composition of detrital chromspinel varies widely and is constrained by the substitution of Al3+ and Cr3+, Fe2+ and Mg2+ cations. Chemically, low-Al (Al2O3 = 12 wt.%) and high-Cr (Cr2O3 = 52–56 wt.%) chromspinel prevail. The compositional analysis using discrimination diagrams showed that most chromites correspond to mantle peridotites of subduction settings. Volcanic rocks could be an additional source for detrital chromites. It is confirmed by compositions of monomineralic, polymineralic and melt inclusions in chromspinels. The presented data indicates that ophiolite peridotites and related chromite ore associated with oceanic and island-arc volcanic rocks, widespread in the Ural orogen, could be the main sources of the detrital chromspinel of the Sabantuy paleoplacer. Full article
(This article belongs to the Special Issue Chromite Deposits: Mineralogy, Petrology and Genesis)
Show Figures

Graphical abstract

36 pages, 14365 KiB  
Article
Testing Trace-Element Distribution and the Zr-Based Thermometry of Accessory Rutile from Chromitite
by Federica Zaccarini, Giorgio Garuti, George L. Luvizotto, Yuri de Melo Portella and Athokpam K. Singh
Minerals 2021, 11(7), 661; https://doi.org/10.3390/min11070661 - 22 Jun 2021
Cited by 4 | Viewed by 3156
Abstract
Trace element distribution and Zr-in-rutile temperature have been investigated in accessory rutile from stratiform (UG2, Merensky Reef, Jacurici), podiform (Loma Peguera), and metamorphic chromitites in cratonic shields (Cedrolina, Nuasahi). Rutile from chromitite has typical finger-print of Cr-V-Nb-W-Zr, whose relative abundance distinguishes magmatic from [...] Read more.
Trace element distribution and Zr-in-rutile temperature have been investigated in accessory rutile from stratiform (UG2, Merensky Reef, Jacurici), podiform (Loma Peguera), and metamorphic chromitites in cratonic shields (Cedrolina, Nuasahi). Rutile from chromitite has typical finger-print of Cr-V-Nb-W-Zr, whose relative abundance distinguishes magmatic from metamorphic chromitite. In magmatic deposits, rutile precipitates as an intercumulus phase, or forms by exsolution from chromite, between 870 °C and 540 °C. The Cr-V in rutile reflects the composition of chromite, both Nb and Zr are moderately enriched, and W is depleted, except for in Jacurici, where moderate W excess was a result of crustal contamination of the mafic magma. In metamorphic deposits, rutile forms by removal of Ti-Cr-V from chromite during metamorphism between 650 °C and 400 °C, consistent with greenschist-amphibolite facies, and displays variable Cr-Nb, low V-Zr, and anomalous enrichment in W caused by reaction with felsic fluids emanating from granitoid intrusions. All deposits, except Cedrolina, contain Rutile+PGM composite grains (<10 µm) locked in chromite, possibly representing relics of orthomagmatic assemblages. The high Cr-V content and the distinctive W-Nb-Zr signature that typifies accessory rutile in chromitite provide a new pathfinder to trace the provenance of detrital rutile in placer deposits. Full article
(This article belongs to the Special Issue Chromite Deposits: Mineralogy, Petrology and Genesis)
Show Figures

Figure 1

25 pages, 16411 KiB  
Article
Platinum-Group Minerals of Pt-Placer Deposits Associated with the Svetloborsky Ural-Alaskan Type Massif, Middle Urals, Russia
by Sergey Yu. Stepanov, Roman S. Palamarchuk, Aleksandr V. Kozlov, Dmitry A. Khanin, Dmitry A. Varlamov and Daria V. Kiseleva
Minerals 2019, 9(2), 77; https://doi.org/10.3390/min9020077 - 28 Jan 2019
Cited by 23 | Viewed by 6892
Abstract
The alteration of platinum group minerals (PGM) of eluval, proximal, and distal placers associated with the Ural-Alaskan type clinopyroxenite-dunite massifs were studied. The Isovsko-Turinskaya placer system is unique regarding its size, and was chosen as research object as it is PGM-bearing for more [...] Read more.
The alteration of platinum group minerals (PGM) of eluval, proximal, and distal placers associated with the Ural-Alaskan type clinopyroxenite-dunite massifs were studied. The Isovsko-Turinskaya placer system is unique regarding its size, and was chosen as research object as it is PGM-bearing for more than 70 km from its lode source, the Ural-Alaskan type Svetloborsky massif, Middle Urals. Lode chromite-platinum ore zones located in the Southern part of the dunite “core” of the Svetloborsky massif are considered as the PGM lode source. For the studies, PGM concentrates were prepared from the heavy concentrates which were sampled at different distances from the lode source. Eluvial placers are situated directly above the ore zones, and the PGM transport distance does not exceed 10 m. Travyanistyi proximal placer is considered as an example of alluvial ravine placer with the PGM transport distance from 0.5 to 2.5 km. The Glubokinskoe distal placer located in the vicinity of the Is settlement are chosen as the object with the longest PGM transport distance (30–35 km from the lode source). Pt-Fe alloys, and in particular, isoferroplatinum prevail in the lode ores and placers with different PGM transport distance. In some cases, isoferroplatinum is substituted by tetraferroplatinum and tulameenite in the grain marginal parts. Os-Ir-(Ru) alloys, erlichmanite, laurite, kashinite, bowieite, and Ir-Rh thiospinels are found as inclusions in Pt-Fe minerals. As a result of the study, it was found that the greatest contribution to the formation of the placer objects is made by the erosion of chromite-platinum mineralized zones in dunites. At a distance of more than 10 km, the degree of PGM mechanical attrition becomes significant, and the morphological features, characteristic of lode platinum, are practically not preserved. One of the signs of the significant PGM transport distance in the placers is the absence of rims composed of the tetraferroplatinum group minerals around primary Pt-Fez alloys. The sie of the nuggets decreases with the increasing transport distance. The composition of isoferroplatinum from the placers and lode chromite-platinum ore zones are geochemically similar. Full article
Show Figures

Figure 1

19 pages, 1959 KiB  
Article
PGE–(REE–Ti)-Rich Micrometer-Sized Inclusions, Mineral Associations, Compositional Variations, and a Potential Lode Source of Platinum-Group Minerals in the Sisim Placer Zone, Eastern Sayans, Russia
by Andrei Y. Barkov, Gennadiy I. Shvedov and Robert F. Martin
Minerals 2018, 8(5), 181; https://doi.org/10.3390/min8050181 - 27 Apr 2018
Cited by 13 | Viewed by 4613
Abstract
We report the results of a mineralogical investigation of placer samples from the upper reaches of the Sisim watershed, near Krasnoyarsk, in Eastern Sayans, Russia. The placer grains are predominantly Os–Ir–(Ru) alloys (80%) that host various inclusions (i.e., platinum-group elements (PGE)-rich monosulfide, PGE-rich [...] Read more.
We report the results of a mineralogical investigation of placer samples from the upper reaches of the Sisim watershed, near Krasnoyarsk, in Eastern Sayans, Russia. The placer grains are predominantly Os–Ir–(Ru) alloys (80%) that host various inclusions (i.e., platinum-group elements (PGE)-rich monosulfide, PGE-rich pentlandite, Ni–Fe–(As)-rich laurite, etc.) and subordinate amounts of Pt–Fe alloys. Analytical data (wavelength- and energy-dispersive X-ray spectroscopy) are presented for all the alloy minerals and the suite of micrometer-sized inclusions that they contain, as well as associated grains of chromian spinel. The assemblage was likely derived from chromitite units of the Lysanskiy mafic–ultramafic complex, noted for its Ti–(V) mineralization. In the Os–Ir–(Ru) alloys, the ratio Ru/Ir is ≤1, Ir largely substitutes for Os, and compositional variations indicate the scheme [Ir + Ru] → 2Os. In contrast, in the laurite–erlichmanite series, Ir and Os are strongly and positively correlated, whereas Ir and Ru are negatively correlated; Ru and Os are inversely correlated. These compositions point to the scheme [Os2+ + 2Ir3+ + □] → 4Ru2+ or alternatively, to Os2+ + Ir2+ → 2Ru2+. We deduce a potential sequence of crystallization in the parental rock and address the effects of decreasing temperature and increasing fugacity of sulfur and arsenic on the assemblage. Inclusions of Ti-rich minerals in the alloy grains are consistent with the Lysanskiy setting; the complete spectrum of chromite–magnesiochromite compositions indicates that an important part of that complex was eroded. A localized fluid-dominated micro-environment produced the unique association of laurite with monazite-(Ce), again considered a reflection of the special attributes of the Lysanskiy complex. Full article
Show Figures

Figure 1

Back to TopTop