Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (1)

Search Parameters:
Keywords = carotid-oculomotor window

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 8614 KiB  
Review
Cranio-Orbito-Zygomatic Approach: Core Techniques for Tailoring Target Exposure and Surgical Freedom
by Sabino Luzzi, Alice Giotta Lucifero, Alfio Spina, Matías Baldoncini, Alvaro Campero, Samer K. Elbabaa and Renato Galzio
Brain Sci. 2022, 12(3), 405; https://doi.org/10.3390/brainsci12030405 - 18 Mar 2022
Cited by 10 | Viewed by 4976
Abstract
Background: The cranio-orbito-zygomatic (COZ) approach is a workhorse of skull base surgery, and each of its steps has a precise effect on target exposure and surgical freedom. The present study overviews the key techniques for execution and tailoring of the COZ approach, focusing [...] Read more.
Background: The cranio-orbito-zygomatic (COZ) approach is a workhorse of skull base surgery, and each of its steps has a precise effect on target exposure and surgical freedom. The present study overviews the key techniques for execution and tailoring of the COZ approach, focusing on the quantitative effects resulting from removal of the orbitozygomatic (OZ) bar, orbital rim, and zygomatic arch. Methods: A PRISMA-based literature review was performed on the PubMed/Medline and Web of Science databases using the main keywords associated with the COZ approach. Articles in English without temporal restriction were included. Eligibility was limited to neurosurgical relevance. Results: A total of 78 articles were selected. The range of variants of the COZ approach involves a one-piece, two-piece, and three-piece technique, with a decreasing level of complexity and risk of complications. The two-piece technique includes an OZ and orbitopterional variant. Superolateral orbitotomy expands the subfrontal and transsylvian corridors, increasing surgical freedom to the basal forebrain, hypothalamic region, interpeduncular fossa, and basilar apex. Zygomatic osteotomy shortens the working distance of the pretemporal and subtemporal routes. Conclusion: Subtraction of the OZ bar causes a tremendous increase in angular exposure of the subfrontal, transsylvian, pretemporal, and subtemporal perspectives avoiding brain retraction, allowing for multiangled trajectories, and shortening the working distance. The COZ approach can be tailored based on the location of the lesion, thus optimizing the target exposure and surgical freedom and decreasing the risk of complications. Full article
Show Figures

Figure 1

Back to TopTop