Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline

Article Types

Countries / Regions

Search Results (1)

Search Parameters:
Keywords = cardo polyetherketone

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 4431 KiB  
Article
Preparation of Macroporous PEK-C Powders with Chemically Linked Ionic Liquids as Catalyst and Kinetics Study of Biomass
by Peng Lu, Yong Cao and Xiaolan Wang
Appl. Sci. 2018, 8(5), 770; https://doi.org/10.3390/app8050770 - 11 May 2018
Cited by 2 | Viewed by 3132
Abstract
Macroporous cardo polyetherketone (PEK-C) powder catalyst bearing covalently ionic liquids (PEK-C-ILs) was prepared, it exhibited a high catalytic performance for biomass hydrolysis. A hydrolysis mechanism of inulin over this new catalyst was proposed as well. The influences of degree of chloromethylation of PEK-C, [...] Read more.
Macroporous cardo polyetherketone (PEK-C) powder catalyst bearing covalently ionic liquids (PEK-C-ILs) was prepared, it exhibited a high catalytic performance for biomass hydrolysis. A hydrolysis mechanism of inulin over this new catalyst was proposed as well. The influences of degree of chloromethylation of PEK-C, catalyst dosage, reaction temperature, pore size of PEK-C-ILs and inulin concentration were investigated. A high conversion of inulin of 99.7% was obtained under the optimal reaction conditions. Meanwhile, the hydrolysis kinetics was studied under different conditions. The proposed kinetic model of inulin hydrolysis catalyzed by PEK-C-ILs was established and it successfully predicted the inulin hydrolysis in wider ranges of experimental conditions. The results demonstrated that the catalytic inulin hydrolysis performance of PEK-C-ILs is better than that of homogenous ILs due to that there was a high-density spatial distribution of active sites on the surface and inner pore wall of PEK-C after the ILs was immobilized. Furthermore, the stability including chemical structure and physical appearance and reusability tests showed that PEK-C-ILs catalyst could be effectively separated and recovered from hydrolysates and has excellent reusability. Importantly, using the PEK-C-ILs as catalyst makes the recycling of ILs simplified, efficient and the hydrolysis process more economical. At the same time, it avoided the potential hazards of homogenous ILs to the environment. Therefore, it is a kind of green catalyst with potential application prospect in many catalysis fields. Full article
(This article belongs to the Section Materials Science and Engineering)
Show Figures

Graphical abstract

Back to TopTop