Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (2)

Search Parameters:
Keywords = carbonaceous disinfection by-products

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
9 pages, 804 KiB  
Communication
Does Biological Activated Carbon Filtration Make Chlor(am)inated Drinking Water Safer
by Jiazheng Pan, Feifei Wang, Lu Zhang, Yulin Hu and Chiquan He
Water 2022, 14(17), 2640; https://doi.org/10.3390/w14172640 - 27 Aug 2022
Cited by 1 | Viewed by 2280
Abstract
Biological activated carbon (BAC) filtration is an effective technology for the removal of natural organic matter. However, one potential drawback of BAC, especially old BAC, is that effluents can contain soluble microbial products released from the biofilm, which are recognized as more toxic [...] Read more.
Biological activated carbon (BAC) filtration is an effective technology for the removal of natural organic matter. However, one potential drawback of BAC, especially old BAC, is that effluents can contain soluble microbial products released from the biofilm, which are recognized as more toxic nitrogenous DBPs (N-DBPs) precursors. So far, limited studies reported the risk of DBP formation potentials (FPs) increase caused by the microbial leakage of BAC. This study compared removal differences of DBP FPs between two BAC filters operated for 1 year and 8 years in a drinking water plant. The results showed that the total summed haloacetic acid FPs and trihalomethane FPs decreased by 34.31% from chlorination, and 55.01% of the total summed halogen acetonitrile FPs from chloramination were removed by the new BAC. However, Chlorinated haloacetonitriles FPs increased by 2.33% after old BAC filtration. To sum up, BAC filtration decreased most DBP FPs, but a potential risk regarding more toxic N-DBP FPs from old BAC should receive more attention. Full article
Show Figures

Figure 1

17 pages, 2920 KiB  
Article
Activated Carbon as a Cathode for Water Disinfection through the Electro-Fenton Process
by Long Chen, Ameet Pinto and Akram N. Alshawabkeh
Catalysts 2019, 9(7), 601; https://doi.org/10.3390/catal9070601 - 12 Jul 2019
Cited by 23 | Viewed by 5746
Abstract
Unlike many other water disinfection methods, hydroxyl radicals (HO) produced by the Fenton reaction (Fe2+/H2O2) can inactivate pathogens regardless of taxonomic identity of genetic potential and do not generate halogenated disinfection by-products. Hydrogen peroxide (H [...] Read more.
Unlike many other water disinfection methods, hydroxyl radicals (HO) produced by the Fenton reaction (Fe2+/H2O2) can inactivate pathogens regardless of taxonomic identity of genetic potential and do not generate halogenated disinfection by-products. Hydrogen peroxide (H2O2) required for the process is typically electrogenerated using various carbonaceous materials as cathodes. However, high costs and necessary modifications to the cathodes still present a challenge to large-scale implementation. In this work, we use granular activated carbon (GAC) as a cathode to generate H2O2 for water disinfection through the electro-Fenton process. GAC is a low-cost amorphous carbon with abundant oxygen- and carbon-containing groups that are favored for oxygen reduction into H2O2. Results indicate that H2O2 production at the GAC cathode is higher with more GAC, lower pH, and smaller reactor volume. Through the addition of iron ions, the electrogenerated H2O2 is transformed into HO that efficiently inactivated model pathogen (Escherichia coli) under various water chemistry conditions. Chick–Watson modeling results further showed the strong lethality of produced HO from the electro-Fenton process. This inactivation coupled with high H2O2 yield, excellent reusability, and relatively low cost of GAC proves that GAC is a promising cathodic material for large-scale water disinfection. Full article
(This article belongs to the Special Issue Environmental Catalysis in Advanced Oxidation Processes)
Show Figures

Graphical abstract

Back to TopTop