Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (3)

Search Parameters:
Keywords = calpain 4 (Capn4)

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
22 pages, 4731 KiB  
Article
Calpain Small Subunit Mediated Secretion of Galectin-3 Regulates Traction Stress
by Imjoo Jang, Shalini Menon, Indrajyoti Indra, Rabiah Basith and Karen A. Beningo
Biomedicines 2024, 12(6), 1247; https://doi.org/10.3390/biomedicines12061247 - 4 Jun 2024
Viewed by 1149
Abstract
The complex regulation of traction forces (TF) produced during cellular migration remains poorly understood. We have previously found that calpain 4 (Capn4), the small non-catalytic subunit of the calpain 1 and 2 proteases, regulates the production of TF independent of the proteolytic activity [...] Read more.
The complex regulation of traction forces (TF) produced during cellular migration remains poorly understood. We have previously found that calpain 4 (Capn4), the small non-catalytic subunit of the calpain 1 and 2 proteases, regulates the production of TF independent of the proteolytic activity of the larger subunits. Capn4 was later found to facilitate tyrosine phosphorylation and secretion of the lectin-binding protein galectin-3 (Gal3). In this study, recombinant Gal3 (rGal3) was added to the media-enhanced TF generated by capn4−/− mouse embryonic fibroblasts (MEFs). Extracellular Gal3 also rescued defects in the distribution, morphology, and adhesive strength of focal adhesions present in capn4−/− MEF cells. Surprisingly, extracellular Gal3 does not influence mechanosensing. c-Abl kinase was found to affect Gal3 secretion and the production of TF through phosphorylation of Y107 on Gal3. Our study also suggests that Gal3-mediated regulation of TF occurs through signaling pathways triggered by β1 integrin but not by focal adhesion kinase (FAK) Y397 autophosphorylation. Our findings provide insights into the signaling mechanism by which Capn4 and secreted Gal3 regulate cell migration through the modulation of TF distinctly independent from a mechanosensing mechanism. Full article
(This article belongs to the Special Issue Galectin as Disease Biomarker)
Show Figures

Figure 1

12 pages, 870 KiB  
Article
Genome-Wide Scan Identifies Selection Signatures in Chinese Wagyu Cattle Using a High-Density SNP Array
by Zezhao Wang, Haoran Ma, Lei Xu, Bo Zhu, Ying Liu, Farhad Bordbar, Yan Chen, Lupei Zhang, Xue Gao, Huijiang Gao, Shengli Zhang, Lingyang Xu and Junya Li
Animals 2019, 9(6), 296; https://doi.org/10.3390/ani9060296 - 30 May 2019
Cited by 24 | Viewed by 5539
Abstract
Selective breeding can lead to genetic diversity and diverse phenotypes in farm animals. Analysis of the genomic regions under selection can provide important insights into the genetic basis of complex traits. In this study, a high-density SNP array was used for analysis of [...] Read more.
Selective breeding can lead to genetic diversity and diverse phenotypes in farm animals. Analysis of the genomic regions under selection can provide important insights into the genetic basis of complex traits. In this study, a high-density SNP array was used for analysis of genome selection signatures in Chinese Wagyu cattle. In total, we obtained 478,903 SNPs and 24,820 no-overlap regions for |iHS| (integrated haplotype score) estimations. Under the threshold of the top 1%, 239 regions were finally identified as candidate selected regions and 162 candidate genes were found based on the UMD3.1 genome assembly. These genes were reported to be associated with fatty acids, such as Bos taurus nitric oxide synthase 1 adaptor protein (NOS1AP), Bos taurus hydroxysteroid 17-beta dehydrogenase 7 (HSD17B7), Bos taurus WD repeat domain 7 (WDR7), Bos taurus ELOVL fatty acid elongase 2 (ELOVL2), Bos taurus calpain 1 (CAPN1), Bos taurus parkin RBR E3 ubiquitin protein ligase (PRKN, also known as PARK2), Bos taurus mitogen-activated protein kinase kinase 6 (MAP2K6), meat quality, including Bos taurus ADAM metallopeptidase domain 12 (ADAM12), Bos taurus 5′-aminolevulinate synthase 1 (ALAS1), Bos taurus small integral membrane protein 13 (SMIM13) and Bos taurus potassium two pore domain channel subfamily K member 2 (KCNK2), growth, and developmental traits, such as Bos taurus insulin like growth factor 2 receptor (IGF2R), Bos taurus RAR related orphan receptor A (RORA), Bos taurus fibroblast growth factor 14 (FGF14), Bos taurus paired box 6 (PAX6) and Bos taurus LIM homeobox 6 (LHX6). In addition, we identified several genes that are associated with body size and weight, including Bos taurus sorting nexin 29 (SNX29), Bos taurus zinc finger imprinted 2 (ZIM2), Bos taurus family with sequence similarity 110 member A (FAM110A), immune system, including Bos taurus toll like receptor 9 (TLR9), Bos taurus TAFA chemokine like family member 1 (TAFA1), Bos taurus glutathione peroxidase 8 (putative) (GPX8), Bos taurus interleukin 5 (IL5), Bos taurus PR domain containing 9 (PRDM9), Bos taurus glutamate ionotropic receptor kainate type subunit 2 (GRIK2) and feed intake efficiency, Bos taurus sodium voltage-gated channel alpha subunit 9 (SCN9A), Bos taurus relaxin family peptide/INSL5 receptor 4 (RXFP4), Bos taurus RNA polymerase II associated protein 3 (RPAP3). Moreover, four GO terms of biological regulation (GO:0009987, GO:0008152) and metabolic process (GO:0003824, GO:0005488) were found based on these genes. In addition, we found that 232 candidate regions (~18 Mb) overlapped with the Quantitative trait loci (QTL)regions extracted from cattle QTLdb. Our findings imply that many genes were selected for important traits in Chinese Wagyu cattle. Moreover, these results can contribute to the understanding of the genetic basis of the studied traits during the formation of this population. Full article
(This article belongs to the Collection Applications of Quantitative Genetics in Livestock Production)
Show Figures

Figure 1

42 pages, 4994 KiB  
Article
Homology Modeling Study of Bovine μ-Calpain Inhibitor-Binding Domains
by Han-Ha Chai, Dajeong Lim, Seung-Hwan Lee, Hee-Yeoul Chai and Eunkyoung Jung
Int. J. Mol. Sci. 2014, 15(5), 7897-7938; https://doi.org/10.3390/ijms15057897 - 6 May 2014
Cited by 4 | Viewed by 6454
Abstract
The activated mammalian CAPN-structures, the CAPN/CAST complex in particular, have become an invaluable target model using the structure-based virtual screening of drug candidates from the discovery phase to development for over-activated CAPN linked to several diseases, such as post-ischemic injury and cataract formation. [...] Read more.
The activated mammalian CAPN-structures, the CAPN/CAST complex in particular, have become an invaluable target model using the structure-based virtual screening of drug candidates from the discovery phase to development for over-activated CAPN linked to several diseases, such as post-ischemic injury and cataract formation. The effect of Ca2+-binding to the enzyme is thought to include activation, as well as the dissociation, aggregation, and autolysis of small regular subunits. Unfortunately, the Ca2+-activated enzyme tends to aggregate when provided as a divalent ion at the high-concentration required for the protease crystallization. This is also makes it very difficult to crystallize the whole-length enzyme itself, as well as the enzyme-inhibitor complex. Several parameters that influence CAPN activity have been investigated to determine its roles in Ca2+-modulation, autoproteolysis, phosphorylation, and intracellular distribution and inhibition by its endogenous inhibitor CAST. CAST binds and inhibits CAPN via its CAPN-inhibitor domains (four repeating domains 1–4; CAST1–4) when CAPN is activated by Ca2+-binding. An important key to understanding CAPN1 inhibition by CAST is to determine how CAST interacts at the molecular level with CAPN1 to inhibit its protease activity. In this study, a 3D structure model of a CAPN1 bound bovine CAST4 complex was built by comparative modeling based on the only known template structure of a rat CAPN2/CAST4 complex. The complex model suggests certain residues of bovine CAST4, notably, the TIPPKYQ motif sequence, and the structural elements of these residues, which are important for CAPN1 inhibition. In particular, as CAST4 docks near the flexible active site of CAPN1, conformational changes at the interaction site after binding could be directly related to CAST4 inhibitory activity. These functional interfaces can serve as a guide to the site-mutagenesis in research on bovine CAPN1 structure-function relationships for the design of small molecules inhibitors to prevent uncontrolled and unspecific degradation in the proteolysis of key protease substrates. Full article
(This article belongs to the Section Physical Chemistry, Theoretical and Computational Chemistry)
Show Figures

Back to TopTop