Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (3)

Search Parameters:
Keywords = caged siRNA

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
27 pages, 2964 KB  
Article
Tailored Intranasal Albumin Caged Selegiline-α Synuclein siRNA Liposome with Improved Efficiency in Parkinson’s Model
by Ahmed A. Katamesh, Hend Mohamed Abdel-Bar, Mohammed Khaled Bin Break, Shimaa M. Hassoun, Gehad Mohammed Subaiea, Amr Radwan and Hadel A. Abo El-Enin
Pharmaceutics 2025, 17(2), 243; https://doi.org/10.3390/pharmaceutics17020243 - 12 Feb 2025
Cited by 3 | Viewed by 2428
Abstract
Background/Objectives: Parkinson’s disease (PD) is a progressive neuro-degenerative disorder characterized by α-synuclein aggregation, which promotes neuronal death and accelerates neurodegeneration. Small interfering RNA (siRNA) can reduce α-synuclein levels, but its therapeutic potential is limited by poor stability and delivery challenges. Similarly, Selegiline (Sel), [...] Read more.
Background/Objectives: Parkinson’s disease (PD) is a progressive neuro-degenerative disorder characterized by α-synuclein aggregation, which promotes neuronal death and accelerates neurodegeneration. Small interfering RNA (siRNA) can reduce α-synuclein levels, but its therapeutic potential is limited by poor stability and delivery challenges. Similarly, Selegiline (Sel), a monoamine oxidase-B (MAO-B) inhibitor, has low bioavailability, restricting its effectiveness. This study aims to develop an intranasal (IN) albumin-coated liposomal system (C-LipSel-siSNCA2) for the co-delivery of Sel and α-synuclein-targeting siRNA (siSNCA2) to enhance brain targeting and therapeutic efficacy. Methods: Liposomes were prepared using the ethanol injection method and optimized via D-optimal design for size, charge, and encapsulation efficiency (EE%). The optimized formulation was coated with human serum albumin (HSA) and characterized for stability, cellular uptake, and gene silencing. In vivo pharmacokinetics and pharmacodynamics were assessed in a rotenone-induced PD rat model to evaluate the motor function, biochemical markers, and brain-targeting efficiency. Results: Optimized liposomes had a particle size of 113.5 ± 6.8 nm, zeta potential of 6.2 ± 0.8 mV, and high EE% (Sel: 92.35%; siRNA: 78.66%). Albumin coating increased size to 136.5 ± 10.3 nm and shifted zeta potential to −13.5 ± 1.4 mV, enhancing stability and targeting. IN administration achieved a 3-fold increase in brain area under the concentration-time curve (AUC) versus intravenous delivery. In PD rats, C-LipSel-siSNCA2 improved motor and non-motor functions, restored dopamine levels, enhanced catalase activity, and reduced MAO-B levels, mitigating dopamine degradation and α-synuclein aggregation. Conclusions: This non-invasive, dual-action nanoplatform offers a targeted therapy for PD, combining siRNA gene silencing and MAO-B inhibition, with the potential for clinical translation in neurodegenerative diseases. Full article
(This article belongs to the Section Drug Delivery and Controlled Release)
Show Figures

Graphical abstract

16 pages, 2362 KB  
Review
Assembly of Protein Cages for Drug Delivery
by Xiaoxuan Yu, Zihui Weng, Ziyang Zhao, Jiayun Xu, Zhenhui Qi and Junqiu Liu
Pharmaceutics 2022, 14(12), 2609; https://doi.org/10.3390/pharmaceutics14122609 - 26 Nov 2022
Cited by 19 | Viewed by 5388
Abstract
Nanoparticles (NPs) have been widely used as target delivery vehicles for therapeutic goods; however, compared with inorganic and organic nanomaterials, protein nanomaterials have better biocompatibility and can self-assemble into highly ordered cage-like structures, which are more favorable for applications in targeted drug delivery. [...] Read more.
Nanoparticles (NPs) have been widely used as target delivery vehicles for therapeutic goods; however, compared with inorganic and organic nanomaterials, protein nanomaterials have better biocompatibility and can self-assemble into highly ordered cage-like structures, which are more favorable for applications in targeted drug delivery. In this review, we concentrate on the typical protein cage nanoparticles drugs encapsulation processes, such as drug fusion expression, diffusion, electrostatic contact, covalent binding, and protein cage disassembly/recombination. The usage of protein cage nanoparticles in biomedicine is also briefly discussed. These materials can be utilized to transport small molecules, peptides, siRNA, and other medications for anti-tumor, contrast, etc. Full article
Show Figures

Figure 1

9 pages, 2022 KB  
Article
Tetrazine-Induced Bioorthogonal Activation of Vitamin E-Modified siRNA for Gene Silencing
by Xueli Zhang, Amu Gubu, Jianfei Xu, Ning Yan, Wenbo Su, Di Feng, Qian Wang and Xinjing Tang
Molecules 2022, 27(14), 4377; https://doi.org/10.3390/molecules27144377 - 8 Jul 2022
Cited by 9 | Viewed by 3193
Abstract
The temporal activation of siRNA provides a valuable strategy for the regulation of siRNA activity and conditional gene silencing. The bioorthogonal bond-cleavage reaction of benzonorbonadiene and tetrazine is a promising trigger in siRNA temporal activation. Here, we developed a new method for the [...] Read more.
The temporal activation of siRNA provides a valuable strategy for the regulation of siRNA activity and conditional gene silencing. The bioorthogonal bond-cleavage reaction of benzonorbonadiene and tetrazine is a promising trigger in siRNA temporal activation. Here, we developed a new method for the bio-orthogonal chemical activation of siRNA based on the tetrazine-induced bond-cleavage reaction. Small-molecule activatable caged siRNAs were developed with the 5′-vitamin E-benzonobonadiene-modified antisense strand targeting the green fluorescent protein (GFP) gene and the mitotic kinesin-5 (Eg5) gene. The addition of tetrazine triggered the reaction with benzonobonadiene linker and induced the linker cleavage to release the active siRNA. Additionally, the conditional gene silencing of both exogenous GFP and endogenous Eg5 genes was successfully achieved with 5′-vitamin E-benzonobonadiene-caged siRNAs, which provides a new uncaging strategy with small molecules. Full article
Show Figures

Graphical abstract

Back to TopTop