Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (3)

Search Parameters:
Keywords = bumps of legs

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 1689 KiB  
Article
Identifying Significant SNPs of the Total Number of Piglets Born and Their Relationship with Leg Bumps in Pigs
by Siroj Bakoev, Lyubov Getmantseva, Maria Kolosova, Faridun Bakoev, Anatoly Kolosov, Elena Romanets, Varvara Shevtsova, Timofey Romanets, Yury Kolosov and Alexander Usatov
Biology 2024, 13(12), 1034; https://doi.org/10.3390/biology13121034 - 11 Dec 2024
Cited by 4 | Viewed by 1286
Abstract
The aim of this study was to identify genetic variants and pathways associated with the total number of piglets born and to investigate the potential negative consequences of the intensive selection for reproductive traits, particularly the formation of bumps on the legs of [...] Read more.
The aim of this study was to identify genetic variants and pathways associated with the total number of piglets born and to investigate the potential negative consequences of the intensive selection for reproductive traits, particularly the formation of bumps on the legs of pigs. We used genome-wide association analysis and methods for identifying selection signatures. As a result, 47 SNPs were identified, localized in genes that play a significant role during sow pregnancy. These genes are involved in follicle growth and development (SGC), early embryonic development (CCDC3, LRRC8C, LRFN3, TNFRSF19), endometrial receptivity and implantation (NEBL), placentation, and embryonic development (ESRRG, GHRHR, TUSC3, NBAS). Several genes are associated with disorders of the nervous system and brain development (BCL11B, CDNF, ULK4, CC2D2A, KCNK2). Additionally, six SNPs are associated with the formation of bumps on the legs of pigs. These variants include intronic variants in the CCDC3, ULK4, and MINDY4 genes, as well as intergenic variants, regulatory region variants, and variants in the exons of non-coding transcripts. The results suggest important biological pathways and genetic variants associated with sow fertility and highlight the potential negative impacts on the health and physical condition of pigs. Full article
(This article belongs to the Special Issue Reproductive Physiology and Pathology in Livestock)
Show Figures

Figure 1

15 pages, 6331 KiB  
Article
Development of Low-Contact-Impedance Dry Electrodes for Electroencephalogram Signal Acquisition
by Ramona B. Damalerio, Ruiqi Lim, Yuan Gao, Tan-Tan Zhang and Ming-Yuan Cheng
Sensors 2023, 23(9), 4453; https://doi.org/10.3390/s23094453 - 2 May 2023
Cited by 9 | Viewed by 6767
Abstract
Dry electroencephalogram (EEG) systems have a short set-up time and require limited skin preparation. However, they tend to require strong electrode-to-skin contact. In this study, dry EEG electrodes with low contact impedance (<150 kΩ) were fabricated by partially embedding a polyimide flexible printed [...] Read more.
Dry electroencephalogram (EEG) systems have a short set-up time and require limited skin preparation. However, they tend to require strong electrode-to-skin contact. In this study, dry EEG electrodes with low contact impedance (<150 kΩ) were fabricated by partially embedding a polyimide flexible printed circuit board (FPCB) in polydimethylsiloxane and then casting them in a sensor mold with six symmetrical legs or bumps. Silver–silver chloride paste was used at the exposed tip of each leg or bump that must touch the skin. The use of an FPCB enabled the fabricated electrodes to maintain steady impedance. Two types of dry electrodes were fabricated: flat-disk electrodes for skin with limited hair and multilegged electrodes for common use and for areas with thick hair. Impedance testing was conducted with and without a custom head cap according to the standard 10–20 electrode arrangement. The experimental results indicated that the fabricated electrodes exhibited impedance values between 65 and 120 kΩ. The brain wave patterns acquired with these electrodes were comparable to those acquired using conventional wet electrodes. The fabricated EEG electrodes passed the primary skin irritation tests based on the ISO 10993-10:2010 protocol and the cytotoxicity tests based on the ISO 10993-5:2009 protocol. Full article
Show Figures

Figure 1

29 pages, 4350 KiB  
Article
A Numerical Investigation of the Geometric Parametrisation of Shock Control Bumps for Transonic Shock Oscillation Control
by Jack A. Geoghegan, Nicholas F. Giannelis and Gareth A. Vio
Fluids 2020, 5(2), 46; https://doi.org/10.3390/fluids5020046 - 10 Apr 2020
Cited by 13 | Viewed by 4727
Abstract
At transonic flight conditions, shock oscillations on wing surfaces are known to occur and result in degraded aerodynamic performance and handling qualities. This is a purely flow-driven phenomenon, known as transonic buffet, that causes limit cycle oscillations and may present itself within the [...] Read more.
At transonic flight conditions, shock oscillations on wing surfaces are known to occur and result in degraded aerodynamic performance and handling qualities. This is a purely flow-driven phenomenon, known as transonic buffet, that causes limit cycle oscillations and may present itself within the operational flight envelope. Hence, there is significant research interest in the development of shock control techniques to either stabilise the unsteady flow or raise the boundary onset. This paper explores the efficacy of dynamically activated contour-based shock control bumps within the buffet envelope of the OAT15A aerofoil on transonic flow control numerically through unsteady Reynolds-averaged Navier–Stokes modelling. A parametric evaluation of the geometric variables that define the Hicks–Henne-derived shock control bump will show that bumps of this type lead to a large design space of applicable shapes for buffet suppression. Assessment of the flow field, local to the deployed shock control bump geometries, reveals that control is achieved through a weakening of the rear shock leg, combined with the formation of dual re-circulatory cells within the separated shear-layer. Within this design space, favourable aerodynamic performance can also be achieved. The off-design performance of two optimal shock control bump configurations is explored over the buffet region for M = 0.73, where the designs demonstrate the ability to suppress shock oscillations deep into the buffet envelope. Full article
(This article belongs to the Special Issue Flow and Aeroelastic Control)
Show Figures

Figure 1

Back to TopTop