Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (1)

Search Parameters:
Keywords = blonanserin

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 2259 KiB  
Article
The Influence of Blonanserin Supersaturation in Liquid and Silica Stabilised Self-Nanoemulsifying Drug Delivery Systems on In Vitro Solubilisation
by Amalie Møller, Hayley B. Schultz, Tahlia R. Meola, Paul Joyce, Anette Müllertz and Clive A. Prestidge
Pharmaceutics 2023, 15(1), 284; https://doi.org/10.3390/pharmaceutics15010284 - 14 Jan 2023
Cited by 1 | Viewed by 2790
Abstract
Reformulating poorly water-soluble drugs as supersaturated lipid-based formulations achieves higher drug loading and potentially improves solubilisation and bioavailability. However, for the weak base blonanserin, silica solidified supersaturated lipid-based formulations have demonstrated reduced in vitro solubilisation compared to their liquid-state counterparts. Therefore, this study [...] Read more.
Reformulating poorly water-soluble drugs as supersaturated lipid-based formulations achieves higher drug loading and potentially improves solubilisation and bioavailability. However, for the weak base blonanserin, silica solidified supersaturated lipid-based formulations have demonstrated reduced in vitro solubilisation compared to their liquid-state counterparts. Therefore, this study aimed to understand the influence of supersaturated drug load on blonanserin solubilisation from liquid and silica solidified supersaturated self-nanoemulsifying drug delivery systems (super-SNEDDS) during in vitro lipolysis. Stable liquid super-SNEDDS with varying drug loads (90–300% of the equilibrium solubility) were solidified by imbibition into porous silica microparticles (1:1 lipid: silica ratio). In vitro lipolysis revealed greater blonanserin solubilisation from liquid super-SNEDDS compared to solid at equivalent drug saturation levels, owing to strong silica-BLON/lipid interactions, evidenced by a significant decrease in blonanserin solubilisation upon addition of silica to a digesting liquid super-SNEDDS. An increase in solid super-SNEDDS drug loading led to increased solubilisation, owing to the increased drug:silica and drug:lipid ratios. Solidifying SNEDDS with silica enables the fabrication of powdered formulations with higher blonanserin loading and greater stability than liquid super-SNEDDS, however at the expense of drug solubilisation. These competing parameters need careful consideration in designing optimal super-SNEDDS for pre-clinical and clinical application. Full article
(This article belongs to the Special Issue Amorphous Drug Formulations: Progress, Challenges and Perspectives)
Show Figures

Figure 1

Back to TopTop