Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (2)

Search Parameters:
Keywords = blastocentesis

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 1609 KB  
Review
Evolution of Minimally Invasive and Non-Invasive Preimplantation Genetic Testing: An Overview
by Efthalia Moustakli, Athanasios Zikopoulos, Charikleia Skentou, Ioanna Bouba, Konstantinos Dafopoulos and Ioannis Georgiou
J. Clin. Med. 2024, 13(8), 2160; https://doi.org/10.3390/jcm13082160 - 9 Apr 2024
Cited by 12 | Viewed by 4978
Abstract
Preimplantation genetic testing (PGT) has become a common supplementary diagnοstic/testing tοol for in vitro fertilization (ΙVF) cycles due to a significant increase in cases of PGT fοr mοnogenic cοnditions (ΡGT-M) and de novο aneuplοidies (ΡGT-A) over the last ten years. This tendency is [...] Read more.
Preimplantation genetic testing (PGT) has become a common supplementary diagnοstic/testing tοol for in vitro fertilization (ΙVF) cycles due to a significant increase in cases of PGT fοr mοnogenic cοnditions (ΡGT-M) and de novο aneuplοidies (ΡGT-A) over the last ten years. This tendency is mostly attributable to the advancement and application of novel cytogenetic and molecular techniques in clinical practice that are capable of providing an efficient evaluation of the embryonic chromosomal complement and leading to better IVF/ICSI results. Although PGT is widely used, it requires invasive biopsy of the blastocyst, which may harm the embryo. Non-invasive approaches, like cell-free DNA (cfDNA) testing, have lower risks but have drawbacks in consistency and sensitivity. This review discusses new developments and opportunities in the field of preimplantation genetic testing, enhancing the overall effectiveness and accessibility of preimplantation testing in the framework of developments in genomic sequencing, bioinformatics, and the integration of artificial intelligence in the interpretation of genetic data. Full article
(This article belongs to the Special Issue Challenges in Diagnosis and Treatment of Infertility)
Show Figures

Figure 1

13 pages, 303 KB  
Review
Non-Invasive Preimplantation Genetic Testing for Aneuploidy and the Mystery of Genetic Material: A Review Article
by Maja Tomic, Eda Vrtacnik Bokal and Martin Stimpfel
Int. J. Mol. Sci. 2022, 23(7), 3568; https://doi.org/10.3390/ijms23073568 - 25 Mar 2022
Cited by 16 | Viewed by 7066
Abstract
This review focuses on recent findings in the preimplantation genetic testing (PGT) of embryos. Different preimplantation genetic tests are presented along with different genetic materials and their analysis. Original material concerning preimplantation genetic testing for aneuploidy (PGT-A) was sourced by searching the PubMed [...] Read more.
This review focuses on recent findings in the preimplantation genetic testing (PGT) of embryos. Different preimplantation genetic tests are presented along with different genetic materials and their analysis. Original material concerning preimplantation genetic testing for aneuploidy (PGT-A) was sourced by searching the PubMed and ScienceDirect databases in October and November 2021. The searches comprised keywords such as ‘preimplantation’, ‘cfDNA’; ‘miRNA’, ‘PGT-A’, ‘niPGT-A’, ‘aneuploidy’, ‘mosaicism’, ‘blastocyst biopsy’, ‘blastocentesis’, ‘blastocoel fluid’, ‘NGS’, ‘FISH’, and ‘aCGH’. Non-invasive PGT-A (niPGT-A) is a novel approach to the genetic analysis of embryos. The premise is that the genetic material in the spent embryo culture media (SECM) corresponds to the genetic material in the embryo cells. The limitations of niPGT-A are a lower quantity and lesser quality of the cell-free genetic material, and its unknown origin. The concordance rate varies when compared to invasive PGT-A. Some authors have also hypothesized that mosaicism and aneuploid cells are preferentially excluded from the embryo during early development. Cell-free genetic material is readily available in the spent embryo culture media, which provides an easier, more economic, and safer extraction of genetic material for analysis. The sampling of the SECM and DNA extraction and amplification must be optimized. The origin of the cell-free media, the percentage of apoptotic events, and the levels of DNA contamination are currently unknown; these topics need to be further investigated. Full article
(This article belongs to the Special Issue Molecular Approach in Understanding of Gametes and Embryos)
Back to TopTop