Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (2)

Search Parameters:
Keywords = bipolar propagule

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 783 KiB  
Article
Floristic Similarities between the Lichen Flora of Both Sides of the Drake Passage: A Biogeographical Approach
by Leopoldo G. Sancho, Ana Aramburu, Javier Etayo and Núria Beltrán-Sanz
J. Fungi 2024, 10(1), 9; https://doi.org/10.3390/jof10010009 - 22 Dec 2023
Cited by 3 | Viewed by 1686
Abstract
This paper analyses the lichen flora of Navarino Island (Tierra del Fuego, Cape Horn Region, Chile), identifying species shared with the South Shetland Islands (Antarctic Peninsula). In this common flora, species are grouped by their biogeographic origin (Antarctic–subantarctic endemic, austral, bipolar, and cosmopolitan), [...] Read more.
This paper analyses the lichen flora of Navarino Island (Tierra del Fuego, Cape Horn Region, Chile), identifying species shared with the South Shetland Islands (Antarctic Peninsula). In this common flora, species are grouped by their biogeographic origin (Antarctic–subantarctic endemic, austral, bipolar, and cosmopolitan), their habitat on Navarino Island (coastal, forest, and alpine), their morphotype (crustaceous, foliaceous, fruticulose, and cladonioid), and the substrate from which they were collected (epiphytic, terricolous and humicolous, and saxicolous). A total of 124 species have been recognised as common on both sides of the Drake Passage, predominantly bipolar, crustaceous, and saxicolous species, and with an alpine distribution on Navarino Island. The most interesting fact is that more than 30% of the flora is shared between the southern tip of South America and the western Antarctic Peninsula, which is an indication of the existence of a meridian flow of propagules capable of crossing the Antarctic polar front. Full article
(This article belongs to the Special Issue Lichen Forming Fungi—in Honour of Prof. Ana Rosa Burgaz)
Show Figures

Figure 1

9 pages, 1608 KiB  
Article
Encapsulation in Calcium Alginate of Nodes from Stolons of Mentha spicata L.
by Maurizio Micheli, Luca Regni and Daniel Fernandes da Silva
Horticulturae 2022, 8(5), 456; https://doi.org/10.3390/horticulturae8050456 - 19 May 2022
Cited by 3 | Viewed by 2681
Abstract
It is well known that the products of encapsulation (multifunctional beads and synthetic seeds) can be used as innovative technological tools to integrate micropropagation both for plant germplasm conservation and to simplify the management of propagation materials in nurseries. Nevertheless, the usual concept [...] Read more.
It is well known that the products of encapsulation (multifunctional beads and synthetic seeds) can be used as innovative technological tools to integrate micropropagation both for plant germplasm conservation and to simplify the management of propagation materials in nurseries. Nevertheless, the usual concept of encapsulation concerns the use of initial in vitro derived explants. In this study, for the first time, in vivo derived organs of Mentha spicata L., obtained through the excision of fragments (nodes) from stolons of cultivated mother plants, were employed. The artificial endosperm had a tenfold reduced concentration of Murashige and Skoog (MS) substrate, with the addition of sucrose (5 g L−1), 6-benzyl-aminopurine (BAP) (0.1 mg L−1) and 1-naphthalene acetic acid (NAA) (0.01 mg L−1). Moreover, the calcium alginate matrix was enriched with different thiophanate-methyl (TM) concentrations (0, 10, 50, 100 and 200 mg L−1) in order to prevent possible contamination during the conversion in nonsterile conditions. Interesting results were obtained encapsulating every single node of fresh stolon as a bipolar propagule able to develop a whole plantlet (conversion), as the coated seed in other species. The synthetic seeds of spearmint without TM in the artificial endosperm showed a satisfactory ability to convert (56.7%) into plantlets after sowing in soil under nonsterile conditions. TM at 100 and 200 mg L−1 negatively affected the total emergence, which decreased to 30.0 and 33.3%, respectively. In general, in the artificial seeds without TM, higher values for most of the aboveground and belowground plants parameters were recorded compared to naked nodes. Full article
(This article belongs to the Collection Application of Tissue Culture to Horticulture)
Show Figures

Figure 1

Back to TopTop