Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (3)

Search Parameters:
Keywords = biotype imprinting

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
11 pages, 853 KiB  
Article
Occurrence and Persistence of Saccharomyces cerevisiae Population in Spontaneous Fermentation and the Relation with “Winery Effect”
by Alice Agarbati, Francesca Comitini, Maurizio Ciani and Laura Canonico
Microorganisms 2024, 12(7), 1494; https://doi.org/10.3390/microorganisms12071494 - 21 Jul 2024
Cited by 3 | Viewed by 1732
Abstract
The yeast Saccharomyces cerevisiae ensures successful fermentation in winemaking, although the persistent use of commercial strains lead to the loss of aroma complexity of wines. Hence, the research of indigenous S. cerevisiae with proper oenological features and well adapted to specific wine-growing areas [...] Read more.
The yeast Saccharomyces cerevisiae ensures successful fermentation in winemaking, although the persistent use of commercial strains lead to the loss of aroma complexity of wines. Hence, the research of indigenous S. cerevisiae with proper oenological features and well adapted to specific wine-growing areas become of great interest for winemakers. Here, 206 pure cultures of S. cerevisiae were isolated from two wineries during a two-year sampling campaign and bio-typed through interdelta sequences analyses with the aim to evaluate the occurrence and persistence of the S. cerevisiae wild population linked to each winery. Both wineries belong to the same Verdicchio DOC wine area (Castelli di Jesi), and never used commercial yeasts during fermentation. Results showed 19 different biotypes with a specific population of S. cerevisiae in each winery, without cross-contamination with each other and with commercial starter strains. Moreover, inside each winery a persistence of some dominant biotypes was observed over time (three biotypes in winery 1; 95% of isolates in the two years and one biotype in winery 2; 20% of isolates in the two years), indicating a sort of “winery-effect”. The evaluation of S. cerevisiae populations for the oenological characters by microfermentations showed a proper and well distinct aromatic imprinting on the resulted wines supporting the concept of “winery effect”. Full article
(This article belongs to the Special Issue Microbiology of the Grape-Wine System)
Show Figures

Figure 1

24 pages, 7837 KiB  
Article
Sour Beer as Bioreservoir of Novel Craft Ale Yeast Cultures
by Chiara Nasuti, Jennifer Ruffini, Laura Sola, Mario Di Bacco, Stefano Raimondi, Francesco Candeliere and Lisa Solieri
Microorganisms 2023, 11(9), 2138; https://doi.org/10.3390/microorganisms11092138 - 23 Aug 2023
Cited by 4 | Viewed by 3399
Abstract
The increasing demand for craft beer is driving the search for novel ale yeast cultures from brewing-related wild environments. The focus of bioprospecting for craft cultures is to identify feral yeasts suitable to imprint unique sensorial attributes onto the final product. Here, we [...] Read more.
The increasing demand for craft beer is driving the search for novel ale yeast cultures from brewing-related wild environments. The focus of bioprospecting for craft cultures is to identify feral yeasts suitable to imprint unique sensorial attributes onto the final product. Here, we integrated phylogenetic, genotypic, genetic, and metabolomic techniques to demonstrate that sour beer during aging in wooden barrels is a source of suitable craft ale yeast candidates. In contrast to the traditional lambic beer maturation phase, during the aging of sour-matured production-style beer, different biotypes of Saccharomyces cerevisiae dominated the cultivable in-house mycobiota, which were followed by Pichia membranifaciens, Brettanomyces bruxellensis, and Brettanomyces anomalus. In addition, three putative S. cerevisiae × Saccharomyces uvarum hybrids were identified. S. cerevisiae feral strains sporulated, produced viable monosporic progenies, and had the STA1 gene downstream as a full-length promoter. During hopped wort fermentation, four S. cerevisiae strains and the S. cerevisiae × S. uvarum hybrid WY213 exceeded non-Saccharomyces strains in fermentative rate and ethanol production except for P. membranifaciens WY122. This strain consumed maltose after a long lag phase, in contrast to the phenotypic profile described for the species. According to the STA1+ genotype, S. cerevisiae partially consumed dextrin. Among the volatile organic compounds (VOCs) produced by S. cerevisiae and the S. cerevisiae × S. uvarum hybrid, phenylethyl alcohol, which has a fruit-like aroma, was the most prevalent. In conclusion, the strains characterized here have relevant brewing properties and are exploitable as indigenous craft beer starters. Full article
Show Figures

Figure 1

18 pages, 1454 KiB  
Review
Genotyping and Bio-Sensing Chemosensory Proteins in Insects
by Guoxia Liu, Philippe Arnaud, Bernard Offmann and Jean-François Picimbon
Sensors 2017, 17(8), 1801; https://doi.org/10.3390/s17081801 - 4 Aug 2017
Cited by 13 | Viewed by 6504
Abstract
Genotyping is the process of determining differences in the genetic make-up of an individual and comparing it to that of another individual. Focus on the family of chemosensory proteins (CSPs) in insects reveals differences at the genomic level across various strains and biotypes, [...] Read more.
Genotyping is the process of determining differences in the genetic make-up of an individual and comparing it to that of another individual. Focus on the family of chemosensory proteins (CSPs) in insects reveals differences at the genomic level across various strains and biotypes, but none at the level of individuals, which could be extremely useful in the biotyping of insect pest species necessary for the agricultural, medical and veterinary industries. Proposed methods of genotyping CSPs include not only restriction enzymatic cleavage and amplification of cleaved polymorphic sequences, but also detection of retroposons in some specific regions of the insect chromosome. Design of biosensors using CSPs addresses tissue-specific RNA mutations in a particular subtype of the protein, which could be used as a marker of specific physiological conditions. Additionally, we refer to the binding properties of CSP proteins tuned to lipids and xenobiotic insecticides for the development of a new generation of biosensor chips, monitoring lipid blood concentration and chemical environmental pollution. Full article
(This article belongs to the Special Issue Genosensing)
Show Figures

Graphical abstract

Back to TopTop