Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (2)

Search Parameters:
Keywords = bio-thermochemical-based lignocellulosic biorefineries

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 7712 KB  
Article
Lignin Syngas Bioconversion by Butyribacterium methylotrophicum: Advancing towards an Integrated Biorefinery
by Marta Pacheco, Filomena Pinto, Joana Ortigueira, Carla Silva, Francisco Gírio and Patrícia Moura
Energies 2021, 14(21), 7124; https://doi.org/10.3390/en14217124 - 1 Nov 2021
Cited by 10 | Viewed by 2906
Abstract
Hybrid bio-thermochemical based technologies have the potential to ensure greater feedstock flexibility for the production of bioenergy and bioproducts. This study focused on the bioconversion of syngas produced from low grade technical lignin to C2-/C4-carboxylic acids by Butyribacterium methylotrophicum [...] Read more.
Hybrid bio-thermochemical based technologies have the potential to ensure greater feedstock flexibility for the production of bioenergy and bioproducts. This study focused on the bioconversion of syngas produced from low grade technical lignin to C2-/C4-carboxylic acids by Butyribacterium methylotrophicum. The effects of pH, medium supplementation and the use of crude syngas were analyzed. At pH 6.0, B. methylotrophicum consumed CO, CO2 and H2 simultaneously up to 87 mol% of carbon fixation, and the supplementation of the medium with acetate increased the production of butyrate by 6.3 times. In long-term bioreactor experiments, B. methylotrophicum produced 38.3 and 51.1 mM acetic acid and 0.7 and 2.0 mM butyric acid from synthetic and lignin syngas, respectively. Carbon fixation reached 83 and 88 mol%, respectively. The lignin syngas conversion rate decreased from 13.3 to 0.9 NmL/h throughout the assay. The appearance of a grayish pellet and cell aggregates after approximately 220 h was indicative of tar deposition. Nevertheless, the stressed cells remained metabolically active and maintained acetate and butyrate production from lignin syngas. The challenge that impurities represent in the bioconversion of crude syngas has a direct impact on syngas cleaning requirements and operation costs, supporting the pursuit for more robust and versatile acetogens. Full article
(This article belongs to the Collection Feature Papers in Bio-Energy)
Show Figures

Graphical abstract

22 pages, 2428 KB  
Article
Techno-Economic and Environmental Assessment of Biomass Gasification and Fischer–Tropsch Synthesis Integrated to Sugarcane Biorefineries
by Jéssica Marcon Bressanin, Bruno Colling Klein, Mateus Ferreira Chagas, Marcos Djun Barbosa Watanabe, Isabelle Lobo de Mesquita Sampaio, Antonio Bonomi, Edvaldo Rodrigo de Morais and Otávio Cavalett
Energies 2020, 13(17), 4576; https://doi.org/10.3390/en13174576 - 3 Sep 2020
Cited by 64 | Viewed by 7872
Abstract
Large-scale deployment of both biochemical and thermochemical routes for advanced biofuels production is seen as a key climate change mitigation option. This study addresses techno-economic and environmental aspects of advanced liquid biofuels production alternatives via biomass gasification and Fischer–Tropsch synthesis integrated to a [...] Read more.
Large-scale deployment of both biochemical and thermochemical routes for advanced biofuels production is seen as a key climate change mitigation option. This study addresses techno-economic and environmental aspects of advanced liquid biofuels production alternatives via biomass gasification and Fischer–Tropsch synthesis integrated to a typical sugarcane distillery. The thermochemical route comprises the conversion of the residual lignocellulosic fraction of conventional sugarcane (bagasse and straw), together with eucalyptus and energy-cane as emerging lignocellulosic biomass options. This work promotes an integrated framework to simulate the mass and energy balances of process alternatives and incorporates techno-economic analyses and sustainability assessment methods based on a life-cycle perspective. Results show that integrated biorefineries provide greenhouse gas emission reduction between 85–95% compared to the fossil equivalent, higher than that expected from a typical sugarcane biorefinery. When considering avoided emissions by cultivated area, biorefinery scenarios processing energy-cane are favored, however at lower economic performance. Thermochemical processes may take advantage of the integration with the typical sugarcane mills and novel biofuels policies (e.g., RenovaBio) to mitigate some of the risks linked to the implementation of new biofuel technologies. Full article
(This article belongs to the Special Issue Analysis of Bio-Based Products for the Circular Economy)
Show Figures

Figure 1

Back to TopTop