Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (1)

Search Parameters:
Keywords = bifacial modification

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
11 pages, 9659 KiB  
Article
Fabrication of Bifacial-Modified Perovskites for Efficient Semitransparent Solar Cells with High Average Visible Transmittance
by Dazheng Chen, Wenjing Shi, Yan Gao, Sai Wang, Baichuan Tian, Zhizhe Wang, Weidong Zhu, Long Zhou, He Xi, Hang Dong, Wenming Chai, Chunfu Zhang, Jincheng Zhang and Yue Hao
Molecules 2025, 30(6), 1237; https://doi.org/10.3390/molecules30061237 - 10 Mar 2025
Viewed by 836
Abstract
Semitransparent perovskite solar cells (PSCs) that possess a high-power conversion efficiency (PCE) and high average visible light transmittance (AVT) can be employed in applications such as photovoltaic windows. In this study, a bifacial modification comprising a buried layer of [4-(3,6-Dimethyl-9H-carbazol-9-yl) butyl] phosphonic acid [...] Read more.
Semitransparent perovskite solar cells (PSCs) that possess a high-power conversion efficiency (PCE) and high average visible light transmittance (AVT) can be employed in applications such as photovoltaic windows. In this study, a bifacial modification comprising a buried layer of [4-(3,6-Dimethyl-9H-carbazol-9-yl) butyl] phosphonic acid (Me-4PACz) and a surface passivator of 2-(2-Thienyl) ethylamine hydroiodide (2-TEAI) was proposed to enhance device performance. When the concentrations of Me-4PACz and 2-TEAI were 0.3 mg/mL and 3 mg/mL, opaque PSCs with a 1.57 eV perovskite absorber achieved a PCE of 22.62% (with a VOC of 1.18 V) and retained 88% of their original value after being stored in air for 1000 h. By substituting a metal electrode with an indium zinc oxide electrode, the resulting semitransparent PSCs showed a PCE of over 20% and an AVT of 9.45%. It was, therefore, suggested that the synergistic effect of Me-4PACz and 2-TEAI improved the crystal quality of perovskites and the carrier transport in devices. When employing an absorber with a wider bandgap (1.67 eV), the corresponding PSC obtained a higher AVT of 20.71% and maintained a PCE of 18.73%; these values show that a superior overall performance is observed compared to that in similar studies. This work is conductive to the future application of semitransparent PSCs. Full article
(This article belongs to the Special Issue Recent Advancements in Semiconductor Materials)
Show Figures

Figure 1

Back to TopTop