Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (2)

Search Parameters:
Keywords = benefits-investment ratio (B/I)

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
23 pages, 14167 KiB  
Article
Bi-Objective Optimization and Emergy Analysis of Multi-Distributed Energy System Considering Shared Energy Storage
by Zhaonian Ye, Yongzhen Wang, Kai Han, Changlu Zhao, Juntao Han and Yilin Zhu
Sustainability 2023, 15(2), 1011; https://doi.org/10.3390/su15021011 - 5 Jan 2023
Cited by 12 | Viewed by 2377
Abstract
Shared energy storage (SES) provides a solution for breaking the poor techno-economic performance of independent energy storage used in renewable energy networks. This paper proposes a multi-distributed energy system (MDES) driven by several heterogeneous energy sources considering SES, where bi-objective optimization and emergy [...] Read more.
Shared energy storage (SES) provides a solution for breaking the poor techno-economic performance of independent energy storage used in renewable energy networks. This paper proposes a multi-distributed energy system (MDES) driven by several heterogeneous energy sources considering SES, where bi-objective optimization and emergy analysis methods are used for the system’s optimal capacity planning and operating scheduling considering economic, environmental, and sustainable performances, and Nash bargaining is adopted for the reasonable distribution of benefits of MDES. Then, an energy system composed of four different DESs (distributed energy system) considering one Shared Energy Storage Operator (SESO) is taken as an example for further study, namely one to four shared energy storage multi-energy systems, where MDES with and without SESO are compared. The results reveal that the operation cost of MDES considering SESO and Nash bargaining is reduced by 3.03%, while all the distributed energy systems have lower operating costs, and SESO has an additional income of $142.4/day. Correspondingly, the emergy yield ratio, emergy sustainability index, and emergy investment ratio of the corresponding system increase by 5.15%, 3.83%, and 9.94%, respectively, wherein the environmental load rate increases by 1.67% because of the greater consumption reduction of renewable resources than that of non-renewable resources under the premise of reduced emergy consumption. Full article
(This article belongs to the Special Issue Reaching Net Zero—Energy Conversion and Storage Systems)
Show Figures

Figure 1

18 pages, 1558 KiB  
Article
Potential of Rainwater Harvesting and Greywater Reuse for Water Consumption Reduction and Wastewater Minimization
by Miguel Ángel López Zavala, Ricardo Castillo Vega and Rebeca Andrea López Miranda
Water 2016, 8(6), 264; https://doi.org/10.3390/w8060264 - 21 Jun 2016
Cited by 47 | Viewed by 16727
Abstract
Northeastern Mexico is a semiarid region with water scarcity and a strong pressure on water sources caused by the rapid increase of population and industrialization. In this region, rainwater harvesting alone is not enough to meet water supply demands due to the irregular [...] Read more.
Northeastern Mexico is a semiarid region with water scarcity and a strong pressure on water sources caused by the rapid increase of population and industrialization. In this region, rainwater harvesting alone is not enough to meet water supply demands due to the irregular distribution of rainfall in time and space. Thus, in this study the reliability of integrating rainwater harvesting with greywater reuse to reduce water consumption and minimize wastewater generation in the Tecnológico de Monterrey, Monterrey Campus, was assessed. Potable water consumption and greywater generation in main facilities of the campus were determined. Rainwater that can be potentially harvested in roofs and parking areas of the campus was estimated based on a statistical analysis of the rainfall. Based on these data, potential water savings and wastewater minimization were determined. Characterization of rainwater and greywater was carried out to determine the treatment necessities for each water source. Additionally, the capacity of water storage tanks was estimated. For the selected treatment systems, an economic assessment was conducted to determine the viability of the alternatives proposed. Results showed that water consumption can be reduced by 48% and wastewater generation can be minimized by 59%. Implementation of rainwater harvesting and greywater reuse systems in the Monterrey Campus will generate important economic benefits to the institution. Amortization of the investments will be achieved in only six years, where the net present value (NPV) will be on the order of US $50,483.2, the internal rate of return (IRR) of 4.6% and the benefits–investment ratio (B/I) of 1.7. From the seventh year, the project will present an IRR greater than the minimum acceptable rate of return (MARR). In a decade, the IRR will be 14.4%, more than twice the MARR, the NPV of US $290,412.1 and the B/I of 3.1, denoting economic feasibility. Based on these results, it is clear that integrating rainwater harvesting with greywater reuse resulted in a more feasible and reliable strategy than those strategies based only on rainwater harvesting. Furthermore, the investments can be amortized in a shorter period of time. Full article
Show Figures

Graphical abstract

Back to TopTop