Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (1)

Search Parameters:
Keywords = batch pressure-retarded osmosis

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 4227 KiB  
Article
Comparison of Energy Efficiency between Atmospheric Batch Pressure-Retarded Osmosis and Single-Stage Pressure-Retarded Osmosis
by Dan Li, Zijing Mo and Qianhong She
Membranes 2023, 13(3), 354; https://doi.org/10.3390/membranes13030354 - 19 Mar 2023
Cited by 5 | Viewed by 2063
Abstract
Batch pressure-retarded osmosis (PRO) with varied-pressure and multiple-cycle operation using a pressurized variable-volume tank has been proposed as a high-efficiency osmotic energy harvesting technology, but it suffers scalability constraints. In this study, a more scalable batch PRO, namely, atmospheric batch PRO (AB-PRO), was [...] Read more.
Batch pressure-retarded osmosis (PRO) with varied-pressure and multiple-cycle operation using a pressurized variable-volume tank has been proposed as a high-efficiency osmotic energy harvesting technology, but it suffers scalability constraints. In this study, a more scalable batch PRO, namely, atmospheric batch PRO (AB-PRO), was proposed, utilizing an atmospheric tank to receive and store the intermediate diluted draw solution (DS) and a pressure exchanger to recover the pressure energy from the diluted DS before being recycled into the tank. Its performance was further compared with single-stage PRO (SS-PRO) at different flow schemes via analytic models. The results show that the AB-PRO with an infinitesimal per-cycle water recovery (r) approaches the thermodynamic maximum energy production under ideal conditions, outperforming the SS-PRO with lower efficiencies caused by under-pressurization (UP). However, when considering inefficiencies, a ~40% efficiency reduction was observed in AB-PRO owing to UP and entropy generation as the optimal r is no-longer infinitesimal. Nonetheless, AB-PRO is still significantly superior to SS-PRO at low water recoveries (R) and maintains a stable energy efficiency at various R, which is conducive to meeting the fluctuating demand in practice by flexibly adjusting R. Further mitigating pressure losses and deficiencies of energy recovery devices can significantly improve AB-PRO performance. Full article
(This article belongs to the Special Issue Honorary Issue for Professor Anthony Fane)
Show Figures

Figure 1

Back to TopTop