Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline

Article Types

Countries / Regions

Search Results (2)

Search Parameters:
Keywords = basal heave deformation

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
24 pages, 5864 KB  
Article
Deformation Characteristics and Base Stability of a Circular Deep Foundation Pit with High-Pressure Jet Grouting Reinforcement
by Xiaoliang Zhu, Wenqing Zhao, Junchen Zhao, Guoliang Dai, Ruizhe Jin, Zhiwei Chen and Wenbo Zhu
Appl. Sci. 2025, 15(12), 6825; https://doi.org/10.3390/app15126825 - 17 Jun 2025
Cited by 1 | Viewed by 730
Abstract
This study investigates the deformation characteristics and base stability of a circular diaphragm wall support system (external diameter: 90 m, wall thickness: 1.5 m) with pit bottom reinforcement for the South Anchorage deep foundation pit of the Zhangjinggao Yangtze River Bridge, which uses [...] Read more.
This study investigates the deformation characteristics and base stability of a circular diaphragm wall support system (external diameter: 90 m, wall thickness: 1.5 m) with pit bottom reinforcement for the South Anchorage deep foundation pit of the Zhangjinggao Yangtze River Bridge, which uses layered and partitioned top-down excavation combined with lining construction. Through field monitoring (deep horizontal displacement of the diaphragm wall, vertical displacement at the wall top, and earth pressure) and numerical simulations (PLAXIS Strength Reduction Method), we systematically analyzed the deformation evolution and failure mechanisms during construction. The results indicate the following: (1) Under the synergistic effect of the circular diaphragm wall, lining, and pit bottom reinforcement, the maximum horizontal displacement at the wall top was less than 30 mm and the vertical displacement was 0.04%H, both significantly below code-specified thresholds, verifying the effectiveness of the support system and pit bottom reinforcement. (2) Earth pressure exhibited a “decrease-then-increase” trend during the excavation proceeds. High-pressure jet grouting pile reinforcement at the pit base significantly enhanced basal constraints, leading to earth pressure below the Rankine active limit during intermediate stages and converging toward theoretical values as deformation progressed. (3) Without reinforcement, hydraulic uplift failure manifested as sand layer suspension and soil shear. After reinforcement, failure modes shifted to basal uplift and wall-external soil sliding, demonstrating that high-pressure jet grouting pile reinforcement had positive contribution basal heave stability by improving soil shear strength. (4) Improved stability verification methods for anti-heave and anti-hydraulic-uplift were proposed, incorporating soil shear strength contributions to overcome the underestimation of reinforcement effects in traditional pressure equilibrium and Terzaghi bearing capacity models. This study provides theoretical and practical references for similar deep foundation pit projects and offers systematic solutions for the safety design and deformation characteristics of circular diaphragm walls with pit bottom reinforcement. Full article
Show Figures

Figure 1

19 pages, 6218 KB  
Article
Deformation-Based Basal Heave Reliability Analysis and Selection on Monitoring Points for General Braced Excavations
by Kaiqi Meng, Guangming Yu, Liang Li, Zhen Xu, Jun Lei, Yanxiang Fan, Hongbiao Yu and Liang Xu
Sustainability 2023, 15(11), 8985; https://doi.org/10.3390/su15118985 - 2 Jun 2023
Cited by 1 | Viewed by 2322
Abstract
A framework for evaluating deformation-based basal heave stability is proposed in order to distinguish between the different responses under freely developed and prohibited basal heave failures. In the case of freely developed basal heave failure, the maximum deformation values occur at the center [...] Read more.
A framework for evaluating deformation-based basal heave stability is proposed in order to distinguish between the different responses under freely developed and prohibited basal heave failures. In the case of freely developed basal heave failure, the maximum deformation values occur at the center point of pit bottom, whereas this is not the case for the prohibited basal heave failure. The critical thickness of soft soil layer between the end of supporting structures and the top of hard stratum is about 0.3B (B = excavation width), beyond which the freely developed basal heave failure arises. In situations otherwise, the prohibited basal heave failure occurs. The failure probability of basal heave failure at the center point increases significantly as B ranges within a limited value; then, it begins to decrease or to vary slightly at a certain value under a given thickness of soft soil layer. If the thickness of soft soil layer is so sufficiently large that freely developed basal heave failure occurs for any of B, the failure probability of basal heave failure at the center point increases as B increases. The selection of the optimum monitoring points for basal heave stability is recommended to account for the weights in the contribution to the basal heave deformations of the influencing factors such as excavation width and thickness of soft soil layer. The proposed framework is applicable to basal heave reliability analysis for braced excavations where deformation values are focused. Full article
Show Figures

Figure 1

Back to TopTop