Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (3)

Search Parameters:
Keywords = asymmetrical double-split rings

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 2769 KiB  
Article
A Reflective Terahertz Point Source Meta-Sensor with Asymmetric Meta-Atoms for High-Sensitivity Bio-Sensing
by Luwei Zheng, Kazuki Hara, Hironaru Murakami, Masayoshi Tonouchi and Kazunori Serita
Biosensors 2024, 14(12), 568; https://doi.org/10.3390/bios14120568 - 23 Nov 2024
Cited by 1 | Viewed by 1035
Abstract
Biosensors operating in the terahertz (THz) region are gaining substantial interest in biomedical analysis due to their significant potential for high-sensitivity trace-amount solution detection. However, progress in compact, high-sensitivity chips and methods for simple, rapid and trace-level measurements is limited by the spatial [...] Read more.
Biosensors operating in the terahertz (THz) region are gaining substantial interest in biomedical analysis due to their significant potential for high-sensitivity trace-amount solution detection. However, progress in compact, high-sensitivity chips and methods for simple, rapid and trace-level measurements is limited by the spatial resolution of THz waves and their strong absorption in polar solvents. In this work, a compact nonlinear optical crystal (NLOC)-based reflective THz biosensor with a few arrays of asymmetrical meta-atoms was developed. A near-field point THz source was locally generated at a femtosecond-laser-irradiation spot via optical rectification, exciting only the single central meta-atom, thereby inducing Fano resonance. The reflective resonance response demonstrated dependence on several aspects, including structure asymmetricity, geometrical size, excitation point position, thickness and array-period arrangement. DNA samples were examined using 1 μL applied to an effective sensing area of 0.234 mm2 (484 μm × 484 μm) for performance evaluation. The developed Fano resonance sensor exhibited nearly double sensitivity compared to that of symmetrical sensors and one-gap split ring resonators. Thus, this study advances liquid-based sensing by enabling easy, rapid and trace-level measurements while also driving the development of compact and highly sensitive THz sensors for biological samples. Full article
(This article belongs to the Section Optical and Photonic Biosensors)
Show Figures

Figure 1

7 pages, 2272 KiB  
Comment
Comment on Lu et al. Ultrathin Terahertz Dual-Band Perfect Metamaterial Absorber Using Asymmetric Double-Split Rings Resonator. Symmetry 2018, 10, 293
by Tariq Ullah and Aamir Rashid
Symmetry 2024, 16(4), 445; https://doi.org/10.3390/sym16040445 - 7 Apr 2024
Viewed by 895
Abstract
In this study, the design of a dual-band terahertz absorber, previously published by Lu et al. (Symmetry 2018, 10, 293), was re-simulated. Our findings showed significantly different absorption results from those published in the article. A detailed analysis was conducted to [...] Read more.
In this study, the design of a dual-band terahertz absorber, previously published by Lu et al. (Symmetry 2018, 10, 293), was re-simulated. Our findings showed significantly different absorption results from those published in the article. A detailed analysis was conducted to explain this discrepancy, which was attributed to the reflection of an unaccounted orthogonal component of the waves from the design, rather than absorption. The metasurface design has two resonances at 4.48 THz and 4.76 THz, respectively. It was reported that at these frequencies, the structure achieved absorption of 98.6% and 98.5%, respectively. However, in our results, it was found that at the second resonance (4.76 THz), the structure acted as a strong cross-polarization converter, reflecting a significant amount of incident energy in the cross-polarization component of the reflected wave. When this component is considered in the reflection coefficient calculations, the absorption reduces to 41% (from 98.5%), which is not an acceptable level for an absorber. In addition, the structure was simulated for both lossy and lossless (FR4) substrate cases to understand the effect of substrate losses. The results showed that the absorption response significantly deteriorates at the first resonance (4.48 THz) in the case of a lossy FR4 substrate. Full article
Show Figures

Figure 1

8 pages, 2172 KiB  
Article
Ultrathin Terahertz Dual-Band Perfect Metamaterial Absorber Using Asymmetric Double-Split Rings Resonator
by Taiguo Lu, Dawei Zhang, Peizhen Qiu, Jiqing Lian, Ming Jing, Binbin Yu and Jing Wen
Symmetry 2018, 10(7), 293; https://doi.org/10.3390/sym10070293 - 20 Jul 2018
Cited by 24 | Viewed by 4479
Abstract
In this article, an ultrathin terahertz dual band metamaterial absorber made up of patterned asymmetrical double-split rings and a continuous metal layer separated by a thin FR-4 layer is designed. Simulation results show that two almost identical strong absorption peaks appear in the [...] Read more.
In this article, an ultrathin terahertz dual band metamaterial absorber made up of patterned asymmetrical double-split rings and a continuous metal layer separated by a thin FR-4 layer is designed. Simulation results show that two almost identical strong absorption peaks appear in the terahertz band. When the incident electric field is perpendicular to the ring gaps located at 11 μm asymmetrically, the absorptivity of 98.6% at 4.48 THz and 98.5% at 4.76 THz can be obtained. The absorption frequency and the absorptivity of the absorber can be modulated by the asymmetric distribution of the gaps. The perfect metamaterial absorber is expected to provide important reference for the design of terahertz modulator, filters, absorbers, and polarizers. Full article
(This article belongs to the Special Issue Broken Symmetry)
Show Figures

Figure 1

Back to TopTop