Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline

Search Results (1)

Search Parameters:
Keywords = astrocytogenesis

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
12 pages, 3138 KiB  
Article
Functional Group-Dependent Induction of Astrocytogenesis and Neurogenesis by Flavone Derivatives
by Ha-Rim Lee, Jin Mi Kang, Young Min Kim, Sagang Kim, Jihyae Ann, Jeewoo Lee and Hyun-Jung Kim
Biomolecules 2019, 9(12), 812; https://doi.org/10.3390/biom9120812 - 2 Dec 2019
Cited by 6 | Viewed by 3224
Abstract
Neural stem cells (NSCs) differentiate into multiple cell types, including neurons, astrocytes, and oligodendrocytes, and provide an excellent platform to screen drugs against neurodegenerative diseases. Flavonoids exert a wide range of biological functions on several cell types and affect the fate of NSCs. [...] Read more.
Neural stem cells (NSCs) differentiate into multiple cell types, including neurons, astrocytes, and oligodendrocytes, and provide an excellent platform to screen drugs against neurodegenerative diseases. Flavonoids exert a wide range of biological functions on several cell types and affect the fate of NSCs. In the present study, we investigated whether the structure-activity relationships of flavone derivatives influence NSC differentiation. As previously reported, we observed that PD98059 (2′-amino-3′-methoxy-flavone), compound 2 (3′-methoxy-flavone) induced astrocytogenesis. In the present study, we showed that compound 3 (2′-hydroxy-3′-methoxy-flavone), containing a 3′-methoxy group, and a non-bulky group at C2′ and C4′, induced astrocytogenesis through JAK-STAT3 signaling pathway. However, compound 1 and 7–12 without the methoxy group did not show such effects. Interestingly, the compounds 4 (2′,3′-dimethoxyflavone), 5 (2′-N-phenylacetamido-3′-methoxy-flavone), and 6 (3′,4′-dimethoxyflavone) containing 3′-methoxy could not promote astrocytic differentiation, suggesting that both the methoxy groups at C3′ and non-bulky group at C2′ and C4′ are required for the induction of astrocytogenesis. Notably, compound 6 promoted neuronal differentiation, whereas its 4′-demethoxylated analog, compound 2, repressed neurogenesis, suggesting an essential role of the methoxy group at C4′ in neurogenesis. These findings revealed that subtle structural changes of flavone derivatives have pronounced effects on NSC differentiation and can guide to design and develop novel flavone chemicals targeting NSCs fate regulation. Full article
(This article belongs to the Section Chemical Biology)
Show Figures

Figure 1

Back to TopTop