Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (2)

Search Parameters:
Keywords = asbestos-contaminated communities

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
12 pages, 4097 KB  
Article
Internal Transcribed Spacer and 16S Amplicon Sequencing Identifies Microbial Species Associated with Asbestos in New Zealand
by Erin Doyle, Dan Blanchon, Sarah Wells, Peter de Lange, Pete Lockhart, Nick Waipara, Michael Manefield, Shannon Wallis and Terri-Ann Berry
Genes 2023, 14(3), 729; https://doi.org/10.3390/genes14030729 - 16 Mar 2023
Cited by 3 | Viewed by 2954
Abstract
Inhalation of asbestos fibres can cause lung inflammation and the later development of asbestosis, lung cancer, and mesothelioma, and the use of asbestos is banned in many countries. In most countries, large amounts of asbestos exists within building stock, buried in landfills, and [...] Read more.
Inhalation of asbestos fibres can cause lung inflammation and the later development of asbestosis, lung cancer, and mesothelioma, and the use of asbestos is banned in many countries. In most countries, large amounts of asbestos exists within building stock, buried in landfills, and in contaminated soil. Mechanical, thermal, and chemical treatment options do exist, but these are expensive, and they are not effective for contaminated soil, where only small numbers of asbestos fibres may be present in a large volume of soil. Research has been underway for the last 20 years into the potential use of microbial action to remove iron and other metal cations from the surface of asbestos fibres to reduce their toxicity. To access sufficient iron for metabolism, many bacteria and fungi produce organic acids, or iron-chelating siderophores, and in a growing number of experiments these have been found to degrade asbestos fibres in vitro. This paper uses the internal transcribed spacer (ITS) and 16S amplicon sequencing to investigate the fungal and bacterial diversity found on naturally-occurring asbestos minerals, asbestos-containing building materials, and asbestos-contaminated soils with a view to later selectively culturing promising species, screening them for siderophore production, and testing them with asbestos fibres in vitro. After filtering, 895 ITS and 1265 16S amplicon sequencing variants (ASVs) were detected across the 38 samples, corresponding to a range of fungal, bacteria, cyanobacterial, and lichenized fungal species. Samples from Auckland (North Island, New Zealand) asbestos cement, Auckland asbestos-contaminated soils, and raw asbestos rocks from Kahurangi National Park (South Island, New Zealand) were comprised of very different microbial communities. Five of the fungal species detected in this study are known to produce siderophores. Full article
(This article belongs to the Section Microbial Genetics and Genomics)
Show Figures

Figure 1

19 pages, 327 KB  
Review
Prevention of Asbestos-Related Disease in Countries Currently Using Asbestos
by Daniela Marsili, Benedetto Terracini, Vilma S. Santana, Juan Pablo Ramos-Bonilla, Roberto Pasetto, Agata Mazzeo, Dana Loomis, Pietro Comba and Eduardo Algranti
Int. J. Environ. Res. Public Health 2016, 13(5), 494; https://doi.org/10.3390/ijerph13050494 - 12 May 2016
Cited by 60 | Viewed by 12951
Abstract
More than 40 years of evaluation have consistently confirmed the carcinogenicity of asbestos in all of its forms. This notwithstanding, according to recent figures, the annual world production of asbestos is approximatively 2,000,000 tons. Currently, about 90% of world asbestos comes from four [...] Read more.
More than 40 years of evaluation have consistently confirmed the carcinogenicity of asbestos in all of its forms. This notwithstanding, according to recent figures, the annual world production of asbestos is approximatively 2,000,000 tons. Currently, about 90% of world asbestos comes from four countries: Russia, China, Brazil and Kazakhstan; and the wide use of asbestos worldwide represents a global threat. The purpose of this paper is to present a review of the asbestos health impact and to discuss the role of epidemiological investigations in countries where asbestos is still used. In these contexts, new, “local” studies can stimulate awareness of the size of the problem by public opinion and other stakeholders and provide important information on the circumstances of exposure, as well as local asbestos-related health impacts. This paper suggests an agenda for an international cooperation framework dedicated to foster a public health response to asbestos, including: new epidemiological studies for assessing the health impact of asbestos in specific contexts; socio-cultural and economic analyses for contributing to identifying stakeholders and to address both the local and global implications of asbestos diffusion; public awareness on the health and socio-economic impact of asbestos use and banning. Full article
Back to TopTop