Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (10)

Search Parameters:
Keywords = apparent foliage

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 27708 KB  
Article
Defoliation of Norway Spruce by Spruce Budworm (Lepidoptera: Tortricidae) and Protection Using Bacillus thuringiensis
by Alvaro Fuentealba, Richard Berthiaume, Simon Fortier, Louis Morneau and Éric Bauce
Forests 2025, 16(7), 1056; https://doi.org/10.3390/f16071056 - 25 Jun 2025
Viewed by 550
Abstract
Norway spruce (Picea abies (L.) Karst.) has been widely planted beyond its natural range due to its fast growth rate and valuable wood. In Québec, over 200 million seedlings have been planted since 1964. Several of these plantations are now facing a [...] Read more.
Norway spruce (Picea abies (L.) Karst.) has been widely planted beyond its natural range due to its fast growth rate and valuable wood. In Québec, over 200 million seedlings have been planted since 1964. Several of these plantations are now facing a new potential threat, i.e., spruce budworm (Choristoneura fumiferana (Clem.)) infestations. Despite contrasting results, Norway and white spruce (P. glauca [Moench] Voss) apparently sustain a similar degree of budworm defoliation. The main study objective is to quantify defoliation in Norway spruce caused by spruce budworm. We also evaluate the efficacy of Bacillus thuringiensis Berliner spp. kurstaki (Btk) in protecting this exotic host tree. Annual defoliation was assessed in plantations of Norway, white, and black spruce (P. mariana [Mill.] BSP) between 2018 and 2022 in the Bas-Saint-Laurent region. Additional surveys were conducted in Norway and white spruce plantations in the Gaspésie and Côte-Nord to evaluate Btk efficacy. We show that both species exhibit similar defoliation levels, though Norway spruce sometimes sustains greater damage (e.g., 35% vs. 10% in 2019). Btk formulations showed low efficacy in protecting Norway spruce foliage (≥49.32% defoliation in treated plantations). Further studies are needed to understand factors influencing Btk efficacy on this host. Full article
(This article belongs to the Special Issue Monitoring and Control of Forest Pests)
Show Figures

Figure 1

28 pages, 388 KB  
Review
Feeding Values of Indigenous Browse Species and Forage Legumes for the Feeding of Ruminants in Ethiopia: A Meta-Analysis
by Sisay Belete, Adugna Tolera, Simret Betsha and Uta Dickhöfer
Agriculture 2024, 14(9), 1475; https://doi.org/10.3390/agriculture14091475 - 29 Aug 2024
Cited by 4 | Viewed by 2450
Abstract
The foliage of browse species and forage legumes has good nutritional value and can be utilized as a protein source in ruminant diets. However, its efficient utilization requires the establishment of a comprehensive database of feeding values. Two databases, i.e., forage nutritive value [...] Read more.
The foliage of browse species and forage legumes has good nutritional value and can be utilized as a protein source in ruminant diets. However, its efficient utilization requires the establishment of a comprehensive database of feeding values. Two databases, i.e., forage nutritive value (92 studies) and in vivo animal performance (62 feeding experiments), were built to assess the feeding value of the foliage of browse species and cultivated forage legumes in Ethiopia. The forage nutritive value data (chemical composition and in vitro digestibility) were summarized as descriptive statistics. The analysis of in vivo data was conducted using a mixed model procedure with fixed (forage supplement) and random (studies) factors. Forage categories had crude protein (CP) ranging from 17.6 ± 5.2% (indigenous browse species) to 22.4 ± 4.5% (multipurpose fodder tree/shrub species), respectively. Variations were observed in CP values between the vegetative and blooming stage harvesting of herbaceous forages (22.7 ± 4.1% versus 19.8 ± 3.5%). The leaves contained more CP than the twigs in multipurpose fodder tree/shrubs (22.8 ± 3.2% versus 18.8 ± 0.6%) and the pods in indigenous browse species (18.0 ± 5.0% versus 15.3 ± 2.3%). However, the greatest mean in vitro organic matter digestibility (IVOMD) of 70.1 ± 10.8% was observed in the foliage of indigenous browse species. The variation in IVOMD was small among the forage categories (61.2 ± 11.2%–63.5 ± 10.8%). Twigs of the multipurpose fodder tree/shrub species had the lowest IVOMD of 53.0 ± 6.9%. Herbaceous forage legumes tended to have higher NDF and ADF values than the other forage categories. In terms of nutrient concentration and digestibility, large variations were observed within the same forage categories and species. The supplementation of forage, on average at 277.5 ± 101.4 g/day (±SD), to a low-quality basal diet resulted in a significant (p < 0.05) improvement in the apparent digestibility of DM, CP, and NDF as well as the daily intake of DM, CP, and metabolizable energy (ME). The application of sole forage supplementation was determined to have comparable effects on DM intake (p = 0.2347) with dietary supplements based on concentrate feedstuffs. However, CP intake (p = 0.0733) tended to be lower for forage over the concentrate treatment. The averaged daily gain (ADG) of the animals was significantly increased (p < 0.05) by 71.2% due to the forage supplement compared to unsupplemented treatment (11.6 ± 5.47 g/d (±SE) vs. 40.3 ± 4.99 g/d (±SE)). Overall, the nutrient utilization and production performance of animals fed with low-quality basal diets could be improved when an appropriate amount of forage is included as supplement. The large variation recorded in the nutritional composition of browse species and forage legumes could provide an opportunity to screen for species and varieties with superior nutritional quality. Full article
13 pages, 333 KB  
Article
Effect of Brosimum alicastrum Foliage on Intake, Kinetics of Fermentation and Passage and Microbial N Supply in Sheep Fed Megathyrsus maximus Hay
by Vicente Valdivia-Salgado, Ever del Jesús Flores-Santiago, Luis Ramírez-Avilés, José Candelario Segura-Correa, Jesús Miguel Calzada-Marín and Juan Carlos Ku-Vera
Animals 2024, 14(8), 1144; https://doi.org/10.3390/ani14081144 - 9 Apr 2024
Viewed by 2037
Abstract
An experiment was carried out to assess the effect of the incorporation of sun-dried foliage of Brosimum alicastrum into rations based on hay of Megathyrsus maximus on intake, rumen fermentation, kinetics of passage, microbial nitrogen supply to the small intestine, apparent digestibility in Pelibuey [...] Read more.
An experiment was carried out to assess the effect of the incorporation of sun-dried foliage of Brosimum alicastrum into rations based on hay of Megathyrsus maximus on intake, rumen fermentation, kinetics of passage, microbial nitrogen supply to the small intestine, apparent digestibility in Pelibuey hair sheep. Four rations were randomly allotted to four rumen-cannulated lambs (BW = 37.4 ± 4.9 kg) using a 4 × 4 Latin square design to assess the effect of increasing levels (0, 15, 30 and 45% DM basis) of foliage of Brosimum alicastrum on a basal ration of M. maximus. Organic matter intake and water consumption increased linearly (p < 0.01) with increasing levels of B. alicastrum in the ration. The rate and potential extent of rumen fermentation of OM and CP of B. alicastrum were 10.6%/h and 86.6% and 11.4%/h and 95.2%, respectively, but no effect (p > 0.05) was found on the potential rumen degradation of DM (40.2%) or on the rate of degradation of DM (0.033%/h) of M. maximus, although a positive effect was found in the rumen degradation rate of NDF (p < 0.05). VFA and ammonia concentration in the rumen and the rate of passage of solids and liquids through the rumen (k1) increased linearly (p < 0.01) with increasing levels of B. alicastrum. Rumen pH was not affected by the incorporation of B. alicastrum (p > 0.05). Microbial nitrogen supply to the small intestine (p < 0.001), apparent digestibility of dry matter (p < 0.01) and NDF (p < 0.05) of the rations were also significantly increased as a result of the incorporation of B. alicastrum foliage. Results from this experiment suggest that the foliage of Brosimum alicastrum can be readily incorporated at around 30% of the ration of dry matter in hair sheep with beneficial effects on feed intake, rate of passage and microbial N supply to the lower tract. Full article
(This article belongs to the Special Issue Advances in Nutritional Manipulation of Rumen Fermentation)
25 pages, 388 KB  
Article
Effect of Purple Neem Foliage as a Feed Supplement on Nutrient Apparent Digestibility, Nitrogen Utilization, Rumen Fermentation, Microbial Population, Plasma Antioxidants, Meat Quality and Fatty Acid Profile of Goats
by Nittaya Taethaisong, Siwaporn Paengkoum, Chatsirin Nakharuthai, Narawich Onjai-uea, Sorasak Thongpea, Boontum Sinpru, Jariya Surakhunthod, Weerada Meethip and Pramote Paengkoum
Animals 2022, 12(21), 2985; https://doi.org/10.3390/ani12212985 - 30 Oct 2022
Cited by 8 | Viewed by 2946
Abstract
The purpose of this experiment was to investigate the effect of Purple Neem foliage as a feed supplement on nutrient apparent digestibility, nitrogen utilization, rumen fermentation, microbial population, plasma antioxidants, meat quality and fatty acid profile of goats. Eighteen Boer male goats (approximately [...] Read more.
The purpose of this experiment was to investigate the effect of Purple Neem foliage as a feed supplement on nutrient apparent digestibility, nitrogen utilization, rumen fermentation, microbial population, plasma antioxidants, meat quality and fatty acid profile of goats. Eighteen Boer male goats (approximately 20 ± 2 kg body weight; mean ± standard deviation (SD)) were randomly allocated into three treatments. All goats were fed a 60 d daily feeding with three treatments: (1) control, (2) 3% Purple Neem foliage (PNF) + 3% sunflower oil (SFO) in concentrate, and (3) 6% Purple Neem foliage (PNF) + 3% sunflower oil (SFO) in concentrate. The findings indicate that goat feed containing 6% PNF + 3% SFO in concentrate increased feed consumption, nutrient intake, nutrient apparent digestibility and nitrogen utilization compared to the goat feed at 3% PNF + 3% SFO and the control group. The feeding of goats with 6% PNF + 3% SFO in concentrate resulted in high ammonia nitrogen, BUN, acetic acid, propionic acid, butyric acid, and the total VFA levels were increased at 2 and 4 h after feeding (p < 0.01). The individual microbial population with 6% PNF + 3% SFO had higher (p < 0.01) total bacteria, higher Butyrivibrio fibrisolven, Fibrobacter succinogenes, Ruminococcus albus, Ruminococcus flavefacises, and Streptococcus bovis, decreased protozoa and methanogen levels at 2 and 4 h after feeding. The antioxidant in plasma indices varied, with 6% PNF + 3% SFO having higher total antioxidant (TAC), superoxide dismutase (SOD), glutathione peroxidase (GPX), 2, 2-diphenyl-1-picrylhydrazyl (DPPH), and catalase (CAT) antioxidant activity and lower malondialdehyde (MDA) in plasma at 2 and 4 h after feeding. Additionally, goat fed 6% PNF + 3% SFO can improve meat quality by lowering drip loss, cooking loss, shear force, and saturated fatty acid as well as increase the fatty acid profile (monounsaturated and polyunsaturated fatty acids) in goat meat. Our findings suggest that Purple Neem foliage might be an excellent alternative additive for goat feed. Full article
(This article belongs to the Special Issue Sustainable Feeding Strategies to Improve Milk and Meat Quality)
15 pages, 2233 KB  
Article
Fertilizer Reduction Combined with Organic Liquid Fertilizer Improved Canopy Structure and Function and Increased Cotton Yield
by Qi Liang, Xiaojuan Shi, Nannan Li, Feng Shi, Yu Tian, Hongxia Zhang, Xianzhe Hao and Honghai Luo
Agronomy 2022, 12(8), 1759; https://doi.org/10.3390/agronomy12081759 - 27 Jul 2022
Cited by 5 | Viewed by 2962
Abstract
The application of organic liquid fertilizer combined with chemical fertilizer is one of the key technologies used to simultaneously improve cotton yield and efficiently utilize resources. However, organic fertilizer is usually applied once as a base fertilizer during production, and few studies have [...] Read more.
The application of organic liquid fertilizer combined with chemical fertilizer is one of the key technologies used to simultaneously improve cotton yield and efficiently utilize resources. However, organic fertilizer is usually applied once as a base fertilizer during production, and few studies have been conducted on topdressing with water during the growth period. Therefore, in this study, Xinluzao 74 was used as the experimental material, and a single fertilizer application (CF) was used as a control in 2019–2020 under the conditions of integrated control of water and fertilizer with mulch drip irrigation. Five combinations of reduction in chemical fertilizer combined with organic fertilizer (OF1, OF2, OF3, OF4, and OF5) were used to investigate the influences of chemical fertilizer combined with organic liquid fertilizer on the leaf area index (LAI), canopy openness (DIFN), mean foliage tilt angle (MTA), photosynthetically active radiation (PAR), canopy apparent photosynthesis (CAP), and yield and quality of cotton. The results show that among the different fertilization treatments, the OF2 treatment had the best results, not only ensuring a suitable LAI (4.8) and maintaining a large DIFN (0.1) but also increasing the light transmittance of the middle and lower canopies (0.02–0.03). At the same time, CAP increased significantly compared with that in the CF treatment, with an average increase of 12.8%. The high value lasted for a long time, and the late decay stage remained at 8.9 μmol m−2 s−1. The ratio of the population respiration rate to total photosynthesis (CR/TCAP) decreased significantly, with an average decrease of 13.5%. Compared with that in CF, the lint yield increased by 27.0% in the other treatments. The correlation analysis showed that lint yield was positively correlated with the relative chlorophyll content (SPAD value), PAR transmittance (PARU) and CAP in the upper canopy (p < 0.05) and significantly negatively correlated with PAR transmittance (PARM) in the middle canopy and PAR transmittance (PARD) and CR/TCAP in the lower canopy (p < 0.05). Therefore, under mulch drip irrigation, the OF2 treatment (OF + 80% CF) improved the canopy structure of cotton at the late growth stage, increased the population photosynthetic rate, and increased lint yield significantly; thus, this approach can be used as an effective fertilization method to achieve the goal of decreasing costs and increasing efficiency in cotton production. Full article
(This article belongs to the Special Issue Fertilization and Water Use in Long-Term Dryland Cotton Crop Systems)
Show Figures

Figure 1

20 pages, 6748 KB  
Article
Petiole-Lamina Transition Zone: A Functionally Crucial but Often Overlooked Leaf Trait
by Max Langer, Thomas Speck and Olga Speck
Plants 2021, 10(4), 774; https://doi.org/10.3390/plants10040774 - 15 Apr 2021
Cited by 18 | Viewed by 6722
Abstract
Although both the petiole and lamina of foliage leaves have been thoroughly studied, the transition zone between them has often been overlooked. We aimed to identify objectively measurable morphological and anatomical criteria for a generally valid definition of the petiole–lamina transition zone by [...] Read more.
Although both the petiole and lamina of foliage leaves have been thoroughly studied, the transition zone between them has often been overlooked. We aimed to identify objectively measurable morphological and anatomical criteria for a generally valid definition of the petiole–lamina transition zone by comparing foliage leaves with various body plans (monocotyledons vs. dicotyledons) and spatial arrangements of petiole and lamina (two-dimensional vs. three-dimensional configurations). Cross-sectional geometry and tissue arrangement of petioles and transition zones were investigated via serial thin-sections and µCT. The changes in the cross-sectional geometries from the petiole to the transition zone and the course of the vascular bundles in the transition zone apparently depend on the spatial arrangement, while the arrangement of the vascular bundles in the petioles depends on the body plan. We found an exponential acropetal increase in the cross-sectional area and axial and polar second moments of area to be the defining characteristic of all transition zones studied, regardless of body plan or spatial arrangement. In conclusion, a variety of terms is used in the literature for describing the region between petiole and lamina. We prefer the term “petiole–lamina transition zone” to underline its three-dimensional nature and the integration of multiple gradients of geometry, shape, and size. Full article
(This article belongs to the Special Issue Plant Anatomy and Biochemistry)
Show Figures

Figure 1

19 pages, 2093 KB  
Article
Biodegradable Polymer Coated Granular Urea Slows Down N Release Kinetics and Improves Spinach Productivity
by Bilal Beig, Muhammad Bilal Khan Niazi, Zaib Jahan, Salik Javed Kakar, Ghulam Abbas Shah, Muhammad Shahid, Munir Zia, Midrar Ul Haq and Muhammad Imtiaz Rashid
Polymers 2020, 12(11), 2623; https://doi.org/10.3390/polym12112623 - 7 Nov 2020
Cited by 52 | Viewed by 8065
Abstract
Low nitrogen (N) utilization efficiency due to environmental N losses from fertilizers results in high-cost on-farm production. Urea coating with biodegradable polymers can prevent these losses by controlling the N release of fertilizers. We calculated N release kinetics of coated granular with various [...] Read more.
Low nitrogen (N) utilization efficiency due to environmental N losses from fertilizers results in high-cost on-farm production. Urea coating with biodegradable polymers can prevent these losses by controlling the N release of fertilizers. We calculated N release kinetics of coated granular with various biodegradable polymeric materials and its impact on spinach yield and N uptake. Different formulations were used, (i) G-1: 10% starch + 5% polyvinyl alcohol (PVA) + 5% molasses; (ii) G-2: 10% starch + 5% PVA + 5% paraffin wax (PW); (iii) G-3: 5% gelatin + 10% gum arabic + 5% PW; (iv) G-4: 5% molasses + 5% gelatin + 10% gum arabic, to coat urea using a fluidized bed coater. The morphological and X-ray diffraction (XRD) analyses indicated that a uniform coating layer with no new phase formation occurred. In the G-2 treatment, maximum crushing strength (72.9 N) was achieved with a slowed-down N release rate and increased efficiency of 31%. This resulted in increased spinach dry foliage yield (47%), N uptake (60%) and apparent N recovery (ANR: 130%) from G-2 compared to uncoated urea (G-0). Therefore, coating granular urea with biodegradable polymers is a good choice to slower down the N release rate and enhances the crop yield and N utilization efficiency from urea. Full article
(This article belongs to the Section Biobased and Biodegradable Polymers)
Show Figures

Graphical abstract

20 pages, 5993 KB  
Article
Effect of Phosphinothricin on Transgenic Downy Birch (Betula pubescens Ehrh.) Containing bar or GS1 Genes
by Vadim G. Lebedev, Konstantin V. Krutovsky and Konstantin A. Shestibratov
Forests 2019, 10(12), 1067; https://doi.org/10.3390/f10121067 - 24 Nov 2019
Cited by 5 | Viewed by 3339
Abstract
Weeds are a big problem in agriculture and forestry, and herbicides are the main tools to control them. Phosphinotricin (ammonium glufosinate, PPT) is one of the most effective non-selective herbicides, to which weeds hardly gain resistance, but the reasons for its effect and [...] Read more.
Weeds are a big problem in agriculture and forestry, and herbicides are the main tools to control them. Phosphinotricin (ammonium glufosinate, PPT) is one of the most effective non-selective herbicides, to which weeds hardly gain resistance, but the reasons for its effect and toxicity to plants are still unclear, and especially, it is little studied in trees, including transgenic ones. We studied the physiological responses of downy birch (Betula pubescens Ehrh.) containing the herbicide resistance bar gene or the cytosol glutamine synthetase GS1 gene (the target enzyme of the herbicide) to PPT-based Basta herbicide treatment in various doses under open-air conditions during two years. Birch saplings with the bar gene were resistant to a double field dose (10 L/ha), but the expression of the GS1 gene only slightly increased resistance compared to the control. Herbicide treatment increased the ammonium level in leaf tissue by 3–8 times, but this, apparently, was not the main cause of plant death. Among leaf pigments, chlorophyll B was the most resistant to PPT, and carotenoids were the most sensitive. Responses of birch trees with the GS1 gene (accumulation of ammonium, pigment content, and dehydration) during treatment with a low dose of herbicide were less pronounced than in control plants. One-year-old control and transgenic plants with the GS gene died after 2.5 L/ha treatment, and two-year-old plants lost foliage after such treatment but remained alive and developed buds four weeks after treatment. Herbicide treatment of plants with the bar gene did not cause significant deviations in height (first year) or the accumulation of aboveground biomass (second year). The obtained results improve our understanding of the effect of PPT on woody plants and can be used both to clarify mechanisms of herbicide action and in plantation forestry. Full article
(This article belongs to the Special Issue Forest Genetics and Tree Improvement)
Show Figures

Figure 1

7 pages, 1632 KB  
Article
Cryphalus eriobotryae sp. nov. (Coleoptera: Curculionidae: Scolytinae), a New Insect Pest of Loquat Eriobotrya japonica in China
by Sizhu Zheng, Andrew J. Johnson, You Li, Chunrong Chu and Jiri Hulcr
Insects 2019, 10(6), 180; https://doi.org/10.3390/insects10060180 - 22 Jun 2019
Cited by 13 | Viewed by 6223
Abstract
A previously unknown bark beetle species, Cryphalus eriobotryae sp. nov. Johnson, 2019 has emerged as a lethal pest of loquat (Eriobotrya japonica) in China. The description of new species has been provided. The new species is distinguished from the other Cryphalus [...] Read more.
A previously unknown bark beetle species, Cryphalus eriobotryae sp. nov. Johnson, 2019 has emerged as a lethal pest of loquat (Eriobotrya japonica) in China. The description of new species has been provided. The new species is distinguished from the other Cryphalus by the weakly aciculate frons, by the antennae, with unevenly spaced procurved sutures, by the short pronotal disc, with hair-like setae, and by the widely spaced mesocoxae. The survey of plantation records from around Suzhou suggests that this beetle was introduced from another area not long before 2017. In the surveyed loquat plantation in 2018, 20–90% of trees showed signs of infestation, and 5% were killed in 2018, resulting in the death of over 1000 trees. Outbreaks of the apparently loquat-specific Cryphalus eriobotryae can be diagnosed by hundreds of cankers on the trunk, and wilted foliage. This pest is of concern as a loquat plantation pest and as a pest of fruit production and ornamental trees within Suzhou, and globally. Full article
Show Figures

Figure 1

21 pages, 7078 KB  
Article
Tropical Forests of Réunion Island Classified from Airborne Full-Waveform LiDAR Measurements
by Xiaoxia Shang, Patrick Chazette, Julien Totems, Elsa Dieudonné, Eric Hamonou, Valentin Duflot, Dominique Strasberg, Olivier Flores, Jacques Fournel and Pierre Tulet
Remote Sens. 2016, 8(1), 43; https://doi.org/10.3390/rs8010043 - 7 Jan 2016
Cited by 7 | Viewed by 6528
Abstract
From an unprecedented experiment using airborne measurements performed over the rich forests of Réunion Island, this paper aims to present a methodology for the classification of diverse tropical forest biomes as retrieved from vertical profiles measured using a full-waveform LiDAR. This objective is [...] Read more.
From an unprecedented experiment using airborne measurements performed over the rich forests of Réunion Island, this paper aims to present a methodology for the classification of diverse tropical forest biomes as retrieved from vertical profiles measured using a full-waveform LiDAR. This objective is met through the retrieval of both the canopy height and the Leaf Area Index (LAI), obtained as an integral of the foliage profile. The campaign involved sites ranging from coastal to rain forest, including tropical montane cloud forest, as found on the Bélouve plateau. The mean values of estimated LAI retrieved from the apparent foliage profile are between ~5 and 8 m2/m2, and the mean canopy height values are ~15 m for both tropical montane cloud and rain forests. Good agreement is found between LiDAR- and MODIS-derived LAI for moderate LAI (~5 m2/m2), but the LAI retrieved from LiDAR is larger than MODIS on thick rain forest sites (~8 against ~6 m2/m2 from MODIS). Regarding the characterization of tropical forest biomes, we show that the rain and montane tropical forests can be well distinguished from planted forests by the use of the parameters directly retrieved from LiDAR measurements. Full article
(This article belongs to the Special Issue Remote Sensing of Vegetation Structure and Dynamics)
Show Figures

Graphical abstract

Back to TopTop