Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (2)

Search Parameters:
Keywords = antimony-germanate-silicate glass

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
13 pages, 2574 KiB  
Article
Crystallization Mechanism and Optical Properties of Antimony-Germanate-Silicate Glass-Ceramic Doped with Europium Ions
by Piotr Golonko, Karolina Sadowska, Tomasz Ragiń, Marcin Kochanowicz, Piotr Miluski, Jan Dorosz, Marta Kuwik, Wojciech Pisarski, Joanna Pisarska, Magdalena Leśniak, Dominik Dorosz and Jacek Żmojda
Materials 2022, 15(11), 3797; https://doi.org/10.3390/ma15113797 - 26 May 2022
Cited by 4 | Viewed by 2146
Abstract
Glass-ceramic is semi-novel material with many applications, but it is still problematic in obtaining fibers. This paper aims to develop a new glass-ceramic material that is a compromise between crystallization, thermal stability, and optical properties required for optical fiber technology. This compromise is [...] Read more.
Glass-ceramic is semi-novel material with many applications, but it is still problematic in obtaining fibers. This paper aims to develop a new glass-ceramic material that is a compromise between crystallization, thermal stability, and optical properties required for optical fiber technology. This compromise is made possible by an alternative method with a controlled crystallization process and a suitable choice of the chemical composition of the core material. In this way, the annealing process is eliminated, and the core material adopts a glass-ceramic character with high transparency directly in the drawing process. In the experiment, low phonon antimony-germanate-silicate glass (SGS) doped with Eu3+ ions and different concentrations of P2O5 were fabricated. The glass material crystallized during the cooling process under conditions similar to the drawing processes’. Thermal stability (DSC), X-ray photo analysis (XRD), and spectroscopic were measured. Eu3+ ions were used as spectral probes to determine the effect of P2O5 on the asymmetry ratio for the selected transitions (5D07F1 and 5D07F2). From the measurements, it was observed that the material produced exhibited amorphous or glass-ceramic properties, strongly dependent on the nucleator concentration. In addition, the conducted study confirmed that europium ions co-form the EuPO4 structure during the cooling process from 730 °C to room temperature. Moreover, the asymmetry ratio was changed from over 4 to under 1. The result obtained confirms that the developed material has properties typical of transparent glass-ceramic while maintaining high thermal stability, which will enable the fabrication of fibers with the glass-ceramic core. Full article
Show Figures

Figure 1

8 pages, 2204 KiB  
Article
Optical Characterization of Nano- and Microcrystals of EuPO4 Created by One-Step Synthesis of Antimony-Germanate-Silicate Glass Modified by P2O5
by Jacek Zmojda, Marcin Kochanowicz, Piotr Miluski, Agata Baranowska, Wojciech A. Pisarski, Joanna Pisarska, Renata Jadach, Maciej Sitarz and Dominik Dorosz
Materials 2017, 10(9), 1059; https://doi.org/10.3390/ma10091059 - 9 Sep 2017
Cited by 14 | Viewed by 4639
Abstract
Technology of active glass-ceramics (GC) is an important part of luminescent materials engineering. The classic method to obtain GC is based on annealing of parent glass in proper temperature and different time periods. Generally, only the bulk materials are investigated as a starting [...] Read more.
Technology of active glass-ceramics (GC) is an important part of luminescent materials engineering. The classic method to obtain GC is based on annealing of parent glass in proper temperature and different time periods. Generally, only the bulk materials are investigated as a starting host for further applications. However, the effect of an additional heat-treatment process on emission and structural properties during GC processing is omitted. Here, we focus on the possibility of obtaining transparent glass-ceramic doped with europium ions directly with a melt-quenching method. The influence of phosphate concentration (up to 10 mol %) on the inversion symmetry of local environment of Eu3+ ions in antimony-germanate-silicate (SGS) glass has been investigated. The Stark splitting of luminescence spectra and the local asymmetry ratio estimated by relation of (5D07F2)/(5D07F1) transitions in fabricated glass confirms higher local symmetry around Eu3+ ions. Based on XRD and SEM/EDX measurements, the EuPO4 nano- and microcrystals with monoclinic geometry were determined. Therefore, in our experiment, we confirmed possibility of one-step approach to fabricate crystalline structures (glass-ceramic) in Eu–doped SGS glass without additional annealing process. Full article
(This article belongs to the Special Issue Luminescent Materials 2017)
Show Figures

Figure 1

Back to TopTop