Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (2)

Search Parameters:
Keywords = aneural cognition

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 2397 KB  
Article
Revisiting Chirality in Slime Mold: On the Emergence and Absence of Lateralized Movement in Physarum polycephalum Influenced by Various Stimuli
by Rowena Gehrke and Jannes Freiberg
Symmetry 2025, 17(5), 756; https://doi.org/10.3390/sym17050756 - 14 May 2025
Viewed by 1318
Abstract
Behavioral lateralization in animals is a well-known phenomenon; however, it has only rarely been studied in unicellular organisms. A groundbreaking study found lateralized movement in T-mazes in the formless plasmodia of the slime mold Physarum polycephalum. In this work, a replication of [...] Read more.
Behavioral lateralization in animals is a well-known phenomenon; however, it has only rarely been studied in unicellular organisms. A groundbreaking study found lateralized movement in T-mazes in the formless plasmodia of the slime mold Physarum polycephalum. In this work, a replication of that study was conducted in a specially designed, elaborated T-maze system. Considering the amoeboid organism’s diverse sensory capabilities, we further comprehensively investigated the influence of light, artificial magnetic fields, the magnetic field of the Earth, and vibration on movement direction. Two different clonal lines were tested to assess genetic diversity, encompassing over 1600 individual plasmodia. Our results show that no general lateralized behavior exists in the absence of stimuli in both clonal lines. On the other hand, Physarum’s sensitivity to strong magnetic fields and vibration induces significant true lateralization in previously nonlateralized plasmodia (37.6% right and 62.4% left, respectively). Possible mechanisms behind this induced lateralization are discussed. We conclude that previous findings showing lateralization are likely to have been influenced by unknown external stimuli. Full article
(This article belongs to the Section Life Sciences)
Show Figures

Figure 1

12 pages, 2315 KB  
Article
Differential Lipid Signatures of Lumbar and Cisternal Cerebrospinal Fluid
by Trine L. Toft-Bertelsen, Søren Norge Andreassen, Nicolas H. Norager, Anja Hviid Simonsen, Steen Gregers Hasselbalch, Marianne Juhler and Nanna MacAulay
Biomolecules 2024, 14(11), 1431; https://doi.org/10.3390/biom14111431 - 11 Nov 2024
Viewed by 1734
Abstract
Background: The molecular composition of cerebrospinal fluid (CSF) is often used as a key indicator of biochemical alterations within distinct brain and spinal cord fluid compartments. The CSF protein content in lumbar CSF samples is widely employed as a biomarker matrix for diagnosing [...] Read more.
Background: The molecular composition of cerebrospinal fluid (CSF) is often used as a key indicator of biochemical alterations within distinct brain and spinal cord fluid compartments. The CSF protein content in lumbar CSF samples is widely employed as a biomarker matrix for diagnosing brain-related pathological conditions. CSF lipid profiles may serve as promising complementary diagnostics, but it remains unresolved if the lipid distribution is consistent along the neuroaxis. Methods: The lipid composition was determined with liquid chromatography coupled with tandem mass spectrometry (LC-MS/MS) in cisternal CSF obtained from healthy subjects undergoing preventive surgery of an unruptured aneurism (n = 11) and lumbar CSF obtained from individuals referred for the clinical evaluation of cognitive dysfunction but subsequently cleared and deemed healthy (n = 19). Results: We reveal discernible variations in lipid composition along the neuroaxis, with a higher overall lipid concentration in cisternal CSF, although with different relative distributions of the various lipid classes in the two compartments. The cisternal CSF contained elevated levels of most lipid classes, e.g., sphingomyelins, lysophosphatidylcholines, plasmenylphosphatidylcholines, phosphatidic acids, and triacylglycerols, whereas a few select lipids from the classes of fatty acids, phosphatidylcholines, amides and plasmenylphosphatidylethanolamines were, oppositely, elevated in the lumbar CSF pool. Conclusions: The distinct lipid distribution along the neuroaxis illustrates that the molecular constituents in these two CSF compartments are not uniform. These findings emphasize the necessity of establishing a lumbar lipid index for the accurate interpretation of the cranial CSF lipid profile. Full article
(This article belongs to the Section Lipids)
Show Figures

Figure 1

Back to TopTop