Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (6)

Search Parameters:
Keywords = anchoring length of strands

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 8767 KB  
Article
Numerical Simulation and Experimental Study of Carbon Fiber-Reinforced Polymer Single-Bar Extrusion Anchorage Structure
by Wanxu Zhu, Chengyang Xiong, Boxuan Cheng, Quanxi Shen, Hongbin Cheng and Shangqi Guo
Materials 2024, 17(16), 3915; https://doi.org/10.3390/ma17163915 - 7 Aug 2024
Viewed by 1113
Abstract
The reliable anchorage of carbon fiber-reinforced polymer (CFRP) tendons is a critical issue influencing the stable bearing capacity of bridge cables. This study introduces a novel CFRP single-strand extrusion anchoring structure, where the strand is compressed at its end. By integrating this with [...] Read more.
The reliable anchorage of carbon fiber-reinforced polymer (CFRP) tendons is a critical issue influencing the stable bearing capacity of bridge cables. This study introduces a novel CFRP single-strand extrusion anchoring structure, where the strand is compressed at its end. By integrating this with internal cone filler wrapping, we create a CFRP multi-strand cable composite anchoring system. This innovative design not only minimizes the overall dimensions of the anchoring system but also significantly improves its anchoring efficiency coefficient. An axisymmetric model was developed using ANSYS finite element software. The radial stress distribution and anchorage efficiency coefficient in the anchorage zone of Φ7 CFRP bar and Φ13.6 extrusion die were analyzed with varying parameters, such as chamfering, outer diameter, and length of the extrusion sleeve, and were validated through static load anchorage tests. The results indicate that the highest anchoring efficiency is achieved when four extrusion sleeves with a chamfer angle of 5°, an outer diameter of Φ14.4, and a length of 15 mm are connected in series, reaching a coefficient of 61.04%. Furthermore, this study proposes an anchorage structure where multiple extrusion sleeves are connected in series and sequentially compressed to overcome the limitations of increasing anchorage length for enhancing the anchorage coefficient. The test results demonstrate that with equal total anchorage length, connecting four 15 mm extrusion sleeves in series enhances the anchorage efficiency coefficient by 24.98% compared to a single 60 mm extrusion sleeve structure. Full article
Show Figures

Figure 1

17 pages, 3801 KB  
Article
The Active Roof Supporting Technique of a Double-Layer Flexible and Thick Anchorage for Deep Withdrawal Roadway under Strong Mining Disturbance
by Changliang Han, Yuxin Yuan, Guoli Ding, Wenjie Li, Haoxing Yang and Gang Han
Appl. Sci. 2023, 13(23), 12656; https://doi.org/10.3390/app132312656 - 24 Nov 2023
Cited by 8 | Viewed by 1583
Abstract
Due to the strong disturbance of a mining face, the surrounding rock of the withdrawal roadway is susceptible to deformation and failure, which restricts the safe and efficient evacuation of mining equipment. To resolve this longstanding technical problem in mine production, an engineering [...] Read more.
Due to the strong disturbance of a mining face, the surrounding rock of the withdrawal roadway is susceptible to deformation and failure, which restricts the safe and efficient evacuation of mining equipment. To resolve this longstanding technical problem in mine production, an engineering investigation, numerical simulation, theoretical analysis, and other research methodologies were conducted in this study. Furthermore, the influence mechanism of mining-induced stress on the withdrawal roadway was revealed, the anti-disturbance principles of thick-layer anchorage of roadway roofs were elucidated, and a novel double-layer flexible support technique was proposed. The front abutment pressure, stress superposition, damage accumulation of the surrounding rock, and the fluctuation of mining-induced stress are the primary factors contributing to the significant deformation of the surrounding rock in a withdrawal roadway. However, the fluctuation of mining-induced stress has usually been ignored in previous studies, and it may be the most crucial cause of the significant deformation and instability of the surrounding rock. The thickness of the anchored rock beam is the most vital factor affecting the maximum subsidence and maximum tensile stress of the roof, and increasing the thickness of the anchored rock beam can significantly improve the stability and anti-disturbance performance of the roof. In the proposed double-layer flexible supporting technique, flexible steel strands serve as the carrier, which overcomes the constraint of the roadway height on the length of roof support components. The first layer of flexible support is used to construct a thick fundamental anchorage layer, while the second layer is employed to construct a thicker reinforced anchorage layer, facilitating the effective resistance of the roof against strong mining disturbances. The effectiveness of this technique was further validated through the application of an engineering practice. The research results have reference value for solving the difficult problem of mining roadway support. Full article
(This article belongs to the Special Issue Advanced Underground Coal Mining and Ground Control Technology)
Show Figures

Figure 1

19 pages, 7659 KB  
Article
An Experimental Study on Secondary Transfer Performances of Prestress after Anchoring Failure of Steel Wire Strands
by Rihua Yang, Yiming Yang, Xuhui Zhang and Xinzhong Wang
Metals 2023, 13(8), 1489; https://doi.org/10.3390/met13081489 - 18 Aug 2023
Cited by 4 | Viewed by 1692
Abstract
To understand the secondary transfer performances of residual prestress after the anchoring failure of end-anchored steel wire strands due to corrosion fracture, six steel wire strand components of post-tensioning prestress were designed and fabricated. One-side fast corrosion was applied to the steel wire [...] Read more.
To understand the secondary transfer performances of residual prestress after the anchoring failure of end-anchored steel wire strands due to corrosion fracture, six steel wire strand components of post-tensioning prestress were designed and fabricated. One-side fast corrosion was applied to the steel wire strand components using the electrochemical method until anchoring failure was reached. The sphere of influence, stress changes, and the retraction and swelling effect of broken beams after failure were investigated. The influences of factors such as concrete strength, stirrup area, and the length of the component on the secondary transfer length of residual prestress were discussed. Based on the deformation relationship between prestressed steel wire strands and concrete in the stress transfer zone, a stress equation was established and solved through a bond constitutive model. A prediction model of the effective stress transfer length of prestressed steel wire strand after failure was proposed. The results demonstrated that residual prestress can have a secondary transfer after the corrosion fracture of end-anchored steel wire strands, but some effective prestress may be lost. Moreover, the loss of prestress is inversely proportional to concrete compressive strength. When the specimens are relatively short, the prestress loss increases significantly. Concrete strength has significant influences on the length of secondary transfer. The proposed simplified calculation method of the secondary transfer length of residual prestress has a relatively high accuracy, with an average error of 2.9% and a maximum error of 5.2%. Full article
Show Figures

Figure 1

19 pages, 12925 KB  
Article
Experimental Research on Bonded Anchorage of Carbon Fiber Reinforced Polymer Prestressed Strands
by Liqiang Jia, Bo Wang and T. Tafsirojjaman
Polymers 2022, 14(19), 4015; https://doi.org/10.3390/polym14194015 - 25 Sep 2022
Cited by 11 | Viewed by 3039
Abstract
Aiming at the problems of a large number of corrosion and fatigue damage of the current prestressed steel strands, this paper adopts carbon fiber-reinforced composite (CFRP) strand with better corrosion resistance and fatigue resistance and uses it in concrete structures. The bond anchorage [...] Read more.
Aiming at the problems of a large number of corrosion and fatigue damage of the current prestressed steel strands, this paper adopts carbon fiber-reinforced composite (CFRP) strand with better corrosion resistance and fatigue resistance and uses it in concrete structures. The bond anchorage is usually used to anchor CFRP tension members, which bonds the CFRP through the binding medium. Through experimental research on the CFRP strand bond anchorage, the inner taper of the CFRP prestressed strand cone was anchored and the influence of different anchor lengths and bonding media on the anchorage performance was determined. The test results demonstrate that the taper of the conical anchorage described in this paper is a key factor affecting its anchorage performance and increasing the inner taper within a certain range is beneficial to improving the anchorage performance of the conical anchorage. The bonded anchorage of the CFRP prestressed strand with a 200 mm anchor is the most reliable and efficient, as the taper of the 200 mm anchor is the largest. The average anchoring efficiency coefficient of the 200 mm anchor was 96.4%, which is 3.7% and 2.6% higher than the average anchoring efficiency coefficient of 220 mm and 250 mm anchors, respectively. The anchoring efficiency of the anchor is also high (94.1%) when the epoxy resin mortar is used as the bonding medium. Moreover, after an appropriate amount of quartz sand is added to the epoxy resin, the overall comprehensive performance of the anchor can be improved to a certain extent and the stress of the CFRP strand can be improved. The coupling between ultra-high-performance concrete dry mix (UHPC-GJL) and CFRP strand materials is not suitable for UHPC-GJL being used, as its binding medium as the average anchoring efficiency coefficient is only 44.5% when UHPC-GJL is used as the anchor bonding medium. Full article
(This article belongs to the Special Issue Fiber-Reinforced Polymer Composites in Construction Materials)
Show Figures

Figure 1

27 pages, 19967 KB  
Article
Experimental Study on Seismic Performance of Precast Pretensioned Prestressed Concrete Beam-Column Interior Joints Using UHPC for Connection
by Xueyu Xiong, Yifan Xie, Gangfeng Yao, Ju Liu, Laizhang Yan and Liang He
Materials 2022, 15(16), 5791; https://doi.org/10.3390/ma15165791 - 22 Aug 2022
Cited by 16 | Viewed by 3767
Abstract
The traditional connections and reinforcement details of precast RC frames are complex and cause difficulty in construction. Ultra-high-performance concrete (UHPC) exhibits outstanding compressive strength and bond strength with rebars and strands; thus, the usage of UHPC in the joint core area will reduce [...] Read more.
The traditional connections and reinforcement details of precast RC frames are complex and cause difficulty in construction. Ultra-high-performance concrete (UHPC) exhibits outstanding compressive strength and bond strength with rebars and strands; thus, the usage of UHPC in the joint core area will reduce the amount of transverse reinforcement and shorten the anchoring length of beam rebars as well as strands significantly. Moreover, the lap splice connections of precast columns can be placed in the UHPC joint zone and the construction process will be simplified. This paper presented a novel joint consisting of a precast pretensioned prestressed concrete beam, an ordinary precast reinforced concrete (RC) column, and a UHPC joint zone. To study the seismic performance of the proposed joints, six novel interior joints and one monolithic RC joint were tested under low-cyclic loads. Variables such as the axial force, the compressive strength of UHPC, the stirrup ratio were considered in the tests. The test results indicate that the proposed joints exhibit comparable seismic performance of the monolithic RC joint. An anchorage length of 40 times the strands-diameter and a lap splice length of 16 times the rebar-diameter are adequate for prestressed strands and precast column rebars, respectively. A minimum column depth is suggested as 13 times the diameter of the beam-top continuous rebars passing through the joint. In addition, a nine-time rebar diameter is sufficient for the anchorage of beam bottom rebars. The shear strength of UHPC in the joint core area is suggested as 0.8 times the square root of the UHPC compressive strength. Full article
(This article belongs to the Special Issue Advanced Steel Composites in Construction Engineering)
Show Figures

Figure 1

20 pages, 7092 KB  
Article
Study on Mechanical Properties and Application of a New Flexible Bolt
by Zhengzheng Xie, Nong Zhang, Qun Wei, Jin Wang and Mostafa Sharifzadeh
Appl. Sci. 2021, 11(3), 924; https://doi.org/10.3390/app11030924 - 20 Jan 2021
Cited by 9 | Viewed by 3521
Abstract
As mining depth extends continuously, complex geological environment and strong mining stress pose serious challenges against excavation safety and higher demand for bolt support. To meet the challenges, a new type of flexible bolt is developed that is free from the limitation of [...] Read more.
As mining depth extends continuously, complex geological environment and strong mining stress pose serious challenges against excavation safety and higher demand for bolt support. To meet the challenges, a new type of flexible bolt is developed that is free from the limitation of excavation height and can be installed quickly. The flexible bolts have a tail structure which is squeezed together by the locking casing and the steel-strand rod. The tail structure forms the thread through the rolling process, and then can be quickly installed by the nut rotation type, which avoids the disadvantages of the cable tension installation. Through the flexible long bolts, the thick anchoring layer of the roof can be constructed, and the safety control of the roadway is realized. To obtain the optimal specifications, locking casings of three diameters and lengths were used to prepare bolt samples for static tensile test. Test results show that when the diameter of locking casing is fixed, the peak resistance increases as the length of locking casing increases, but the increased amplitude tends to reduce gradually. When the length of locking casing is fixed, too large a diameter makes the mechanical property unstable. Finally, the optimal length and diameter of locking casing are set at 120 and 30 mm, respectively. In addition, cyclic loading tests were conducted, the results of which indicate that cyclic loading does not change the stress state within the bolts and that flexible bolts display a stable mechanical property. Field results indicate that flexible bolts achieve low damage of the surrounding rock and control the maximum roof fracture depth within 2.1 m, thus guaranteeing the roadway safety. Full article
Show Figures

Figure 1

Back to TopTop