Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (1)

Search Parameters:
Keywords = amphibolitic itabirite

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
13 pages, 2861 KiB  
Article
Proposal for an Environmentally Sustainable Beneficiation Route for the Amphibolitic Itabirite from the Quadrilátero Ferrífero-Brazil
by Gizele Maria Campos Gonçalves and Rosa Malena Fernandes Lima
Minerals 2020, 10(10), 897; https://doi.org/10.3390/min10100897 - 10 Oct 2020
Cited by 4 | Viewed by 2775
Abstract
The high world demand for iron ores opposed to the rapid exhaustion of high-grade deposits from the main producing regions around the world has motivated the search and/or improvement of beneficiation routes, which enable the economic use of iron formations previously considered marginal [...] Read more.
The high world demand for iron ores opposed to the rapid exhaustion of high-grade deposits from the main producing regions around the world has motivated the search and/or improvement of beneficiation routes, which enable the economic use of iron formations previously considered marginal ores, which have the potential to considerably increase mineable reserves due to their large volume. In this study, a sample of amphibolitic itabirite from the eastern region of the Quadrilátero Ferrífero, Minas Gerais, Brazil was characterized, aiming at its use in the industrial pelletizing circuit. The main physical characteristics of this ore are moisture = 10% and specific weight = 3710 kg/m3. The ore has a high grade of loss on ignition—LOI (6.7%) and P (0.14%). Through X-ray diffractometry (XRD), optical microscopy and scanning electron microscope—SEM, the ore was found to consist of 64.5% goethite (amphibolitic, alveolar, massive and earthy); 6.8% hematite (martitic, granular and lamellar) and 0.9% magnetite. The main gangue mineral is quartz (25.5%). Based on the results of concentration tests (magnetic and flotation) performed with the studied sample, the magnetic concentration route of deslimed sample followed by the addition of slimes in magnetic concentrate can be incorporated into the pelletizing process. Full article
Show Figures

Figure 1

Back to TopTop