Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (3)

Search Parameters:
Keywords = amorphigenin

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
12 pages, 2698 KiB  
Article
Amorphigenin from Amorpha fruticosa L. Root Extract Induces Autophagy-Mediated Melanosome Degradation in mTOR-Independent- and AMPK-Dependent Manner
by Ki Won Lee, Dang Thi Nguyen, Minju Kim, Si Hyeon Lee, Seyeon Lim, Jisu Kim, Ki Hun Park, Jeong Yoon Kim, Jiyun Yoo, Cheol Hwangbo and Kwang Dong Kim
Curr. Issues Mol. Biol. 2022, 44(7), 2856-2867; https://doi.org/10.3390/cimb44070196 - 29 Jun 2022
Cited by 6 | Viewed by 2817
Abstract
In this study, we investigated the depigmentation effect of Amorpha fruticosa L. root extract (RE), an herbal medicine. A. fruticosa RE significantly induced depigmentation in α-MSH-treated B16F10 cells at noncytotoxic concentrations. Further, the RE decreased the protein levels of the melanosomal proteins Tyr [...] Read more.
In this study, we investigated the depigmentation effect of Amorpha fruticosa L. root extract (RE), an herbal medicine. A. fruticosa RE significantly induced depigmentation in α-MSH-treated B16F10 cells at noncytotoxic concentrations. Further, the RE decreased the protein levels of the melanosomal proteins Tyr and Pmel without decreasing their transcript levels. We found that MG132, a proteasome complex inhibitor, was unable to rescue the protein levels, but PepA/E-64D (a lysosomal enzyme inhibitor), 3-MA (a representative autophagy inhibitor), and ATG5 knockdown effectively rescued the protein levels and inhibited the depigmentation effect following RE treatment. Among rotenoids, amorphigenin composed in the RE was identified as a functional chemical that could induce depigmentation; whereas rapamycin, an mTOR inhibitor and a nonselective autophagy inducer, could not induce depigmentation, and amorphigenin effectively induced depigmentation through the degradation of melanosomal proteins. Amorphigenin activated AMPK without affecting mTOR, and knockdown of AMPK offset the whitening effect through degradation of melanosome proteins by amorphigenin. Results from this study suggested that amorphigenin can induce degradation of the melanosome through an AMPK-dependent autophagy process, and has the potential to be used as a depigmentation agent for the treatment of hyperpigmentation. Full article
(This article belongs to the Special Issue Food-Derived Bioactive Compounds in Health and Disease)
Show Figures

Figure 1

15 pages, 790 KiB  
Article
Inhibitory Effects of Amorphigenin on the Mitochondrial Complex I of Culex pipiens pallens Coquillett (Diptera: Culicidae)
by Mingshan Ji, Yaping Liang, Zumin Gu and Xiuwei Li
Int. J. Mol. Sci. 2015, 16(8), 19713-19727; https://doi.org/10.3390/ijms160819713 - 20 Aug 2015
Cited by 6 | Viewed by 5385
Abstract
Previous studies in our laboratory found that the extract from seeds of Amorpha fruticosa in the Leguminosae family had lethal effects against mosquito larvae, and an insecticidal compound amorphigenin was isolated. In this study, the inhibitory effects of amorphigenin against the mitochondrial complex [...] Read more.
Previous studies in our laboratory found that the extract from seeds of Amorpha fruticosa in the Leguminosae family had lethal effects against mosquito larvae, and an insecticidal compound amorphigenin was isolated. In this study, the inhibitory effects of amorphigenin against the mitochondrial complex I of Culex pipiens pallens (Diptera: Culicidae) were investigated and compared with that of rotenone. The results showed that amorphigenin and rotenone can decrease the mitochondrial complex I activity both in vivo and in vitro as the in vivo IC50 values (the inhibitor concentrations leading to 50% of the enzyme activity lost) were determined to be 2.4329 and 2.5232 μmol/L, respectively, while the in vitro IC50 values were 2.8592 and 3.1375 μmol/L, respectively. Both amorphigenin and rotenone were shown to be reversible and mixed-I type inhibitors of the mitochondrial complex I of Cx. pipiens pallens, indicating that amorphigenin and rotenone inhibited the enzyme activity not only by binding with the free enzyme but also with the enzyme-substrate complex, and the values of KI and KIS for amorphigenin were determined to be 20.58 and 87.55 μM, respectively, while the values for rotenone were 14.04 and 69.23 μM, respectively. Full article
(This article belongs to the Section Biochemistry)
Show Figures

Figure 1

17 pages, 1208 KiB  
Communication
Toxicity of Amorphigenin from the Seeds of Amorpha fruticosa against the Larvae of Culex pipiens pallens (Diptera: Culicidae)
by Yaping Liang, Xiuwei Li, Zumin Gu, Peiwen Qin and Mingshan Ji
Molecules 2015, 20(2), 3238-3254; https://doi.org/10.3390/molecules20023238 - 16 Feb 2015
Cited by 18 | Viewed by 7541
Abstract
The larvicidal activity of the crude petroleum ether, ethyl acetate, acetone, chloroform and ethanol extracts of Amorpha fruticosa seeds was individually assayed for toxicity against the early fourth-instar larva of the mosquito, Culex pipiens pallens after 24 h exposure. Of the tested extracts, [...] Read more.
The larvicidal activity of the crude petroleum ether, ethyl acetate, acetone, chloroform and ethanol extracts of Amorpha fruticosa seeds was individually assayed for toxicity against the early fourth-instar larva of the mosquito, Culex pipiens pallens after 24 h exposure. Of the tested extracts, the ethanol one exhibited the highest larvicidal activity (LC50 = 22.69 mg/L). Amorphigenin (8'-hydroxyrotenone), a rotenoid compound which exhibits a strong larvicidal activity with LC50 and LC90 values of 4.29 and 11.27 mg/L, respectively, was isolated from the ethanol extract by column chromatograpy. Its structure was elucidated by 1H-NMR, UV and IR spectral data. Furthermore, investigation of amorphigenin’s effects on mitochondrial complex I activity and protein synthesis in C. pipiens pallens larvae reveals that amorphigenin decreases mitochondrial complex I activities to 65.73% at 10.45 μmol/L, compared to the control, when NADH were used as the substrate. Meanwhile, amorphigenin at 10.45 μmol/L also caused a 1.98-fold decrease in protein content, compared to the control larvae treated with acetone only. Full article
(This article belongs to the Section Natural Products Chemistry)
Show Figures

Figure 1

Back to TopTop