Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline

Article Types

Countries / Regions

Search Results (1)

Search Parameters:
Keywords = ammonia purge gases

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 2537 KiB  
Article
Hydrogen Recovery from Waste Gas Streams to Feed (High-Temperature PEM) Fuel Cells: Environmental Performance under a Life-Cycle Thinking Approach
by Ricardo Abejón, Ana Fernández-Ríos, Antonio Domínguez-Ramos, Jara Laso, Israel Ruiz-Salmón, María Yáñez, Alfredo Ortiz, Daniel Gorri, Nicolas Donzel, Deborah Jones, Angel Irabien, Inmaculada Ortiz, Rubén Aldaco and María Margallo
Appl. Sci. 2020, 10(21), 7461; https://doi.org/10.3390/app10217461 - 23 Oct 2020
Cited by 18 | Viewed by 5368
Abstract
Fossil fuels are being progressively substituted by a cleaner and more environmentally friendly form of energy, where hydrogen fuel cells stand out. However, the implementation of a competitive hydrogen economy still presents several challenges related to economic costs, required infrastructures, and environmental performance. [...] Read more.
Fossil fuels are being progressively substituted by a cleaner and more environmentally friendly form of energy, where hydrogen fuel cells stand out. However, the implementation of a competitive hydrogen economy still presents several challenges related to economic costs, required infrastructures, and environmental performance. In this context, the objective of this work is to determine the environmental performance of the recovery of hydrogen from industrial waste gas streams to feed high-temperature proton exchange membrane fuel cells for stationary applications. The life-cycle assessment (LCA) analyzed alternative scenarios with different process configurations, considering as functional unit 1 kg of hydrogen produced, 1 kWh of energy obtained, and 1 kg of inlet flow. The results make the recovery of hydrogen from waste streams environmentally preferable over alternative processes like methane reforming or coal gasification. The production of the fuel cell device resulted in high contributions in the abiotic depletion potential and acidification potential, mainly due to the presence of platinum metal in the anode and cathode. The design and operation conditions that defined a more favorable scenario are the availability of a pressurized waste gas stream, the use of photovoltaic electricity, and the implementation of an energy recovery system for the residual methane stream. Full article
Show Figures

Figure 1

Back to TopTop