Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (2)

Search Parameters:
Keywords = aminoguanidinium cation

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
13 pages, 1743 KiB  
Article
An Overlooked Supramolecular Synthon in Multicomponent Trimethylglycine Crystals: Moderate Hydrogen Bonding Between Carboxylate and H-N Groups of Guanidine Species
by Andrei V. Churakov, Alexander G. Medvedev, Nikita E. Frolov and Mikhail V. Vener
Crystals 2024, 14(12), 1050; https://doi.org/10.3390/cryst14121050 - 30 Nov 2024
Cited by 1 | Viewed by 1206
Abstract
Three novel multicomponent crystals of trimethylglycine with 2-cyanoguanidine, guanidinium and aminoguanidinium chlorides are synthesized and structurally characterized. All three crystal packings are based on the supramolecular synthon formed by two N–H groups of the guanidine species and carboxylate group of trimethylglycine (graph set [...] Read more.
Three novel multicomponent crystals of trimethylglycine with 2-cyanoguanidine, guanidinium and aminoguanidinium chlorides are synthesized and structurally characterized. All three crystal packings are based on the supramolecular synthon formed by two N–H groups of the guanidine species and carboxylate group of trimethylglycine (graph set notation R22(8)). Its enthalpy is about 50 kJ/mol. The three-dimensional structure of crystals is stabilized by intermolecular interactions of various types. The energy of C–H∙∙∙X interactions, where X = O, Cl, reaches 16 kJ/mol due to the acidic nature of methyl hydrogens. The possible structure of the trimethylglycine–urea–2H2O complex is discussed. Its theoretical metric and spectroscopic parameters are in reasonable agreement with the available literature data on the deep eutectic solvent trimethylglycine–urea. Full article
(This article belongs to the Section Crystal Engineering)
Show Figures

Figure 1

9 pages, 429 KiB  
Article
Molecular and Crystal Structure of a New High Energy Density Material: Aminoguanidinium-styphnate, [H2NNHC(NH2)2]2[C6HO2(NO2)3]
by Raik Deblitz, Cristian G. Hrib, Georg Plenikowski and Frank T. Edelmann
Crystals 2012, 2(1), 34-42; https://doi.org/10.3390/cryst2010034 - 4 Jan 2012
Cited by 4 | Viewed by 9598
Abstract
The title compound [H2NNHC(NH2)2]2[C6HO2(NO2)3] (2) was prepared in 85% yield by treatment of sodium styphnate with 2 equivalents of aminoguanidinium nitrate, followed by crystallization from [...] Read more.
The title compound [H2NNHC(NH2)2]2[C6HO2(NO2)3] (2) was prepared in 85% yield by treatment of sodium styphnate with 2 equivalents of aminoguanidinium nitrate, followed by crystallization from aqueous solution. Compound 2 crystallizes in the triclinic space group Pī with unit cell dimensions a = 6.7224(3) Å, b = 10.7473(4) Å, c = 11.9604(5) Å, α = 113.212(4)°, β = 90.579(3)°, γ = 99.815(3)°, V = 779.68(6) Å3, Z = 2. In the solid state structure of 2, no water of crystallization is present. Bond angles within the aromatic ring of the styphnate anion indicate a significant distortion with larger angles (122.04(18)–125.96(18) Å) at the carbons bearing the nitro groups, and smaller ones (113.30(17) and 114.07(17) Å) at the C-O carbon atoms. The crystal structure of 2 consists of layers formed by an extensive network of N-H...O hydrogen bonds between NH2 groups of the aminoguanidinium cation and the negatively charged oxygens of the styphnate anion. The layers are again interconnected by N-H...N hydrogen bonds between neighboring aminoguanidinium cations. Full article
Show Figures

Figure 1

Back to TopTop