Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (2)

Search Parameters:
Keywords = air, ground and water source heat pump (ASHP, GSHP and WSHP)

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
25 pages, 1652 KiB  
Review
Review of the Role of Heat Pumps in Decarbonization of the Building Sector
by Agnieszka Żelazna and Artur Pawłowski
Energies 2025, 18(13), 3255; https://doi.org/10.3390/en18133255 - 21 Jun 2025
Viewed by 612
Abstract
The transition to low-carbon heating systems is fundamental to achieving climate neutrality, particularly within the building sector, which accounts for a significant share of global greenhouse gas emissions. Among various technologies, heat pumps have emerged as a leading solution due to their high [...] Read more.
The transition to low-carbon heating systems is fundamental to achieving climate neutrality, particularly within the building sector, which accounts for a significant share of global greenhouse gas emissions. Among various technologies, heat pumps have emerged as a leading solution due to their high energy efficiency and potential to significantly reduce CO2 emissions, especially when powered by renewable electricity. This systematic review synthesizes findings from the recent literature, including peer-reviewed studies and industry reports, to evaluate the technical performance, environmental impact, and deployment potential of air source, ground source, and water source heat pumps. This review also investigates life cycle greenhouse gas emissions, the influence of geographical energy mix diversity, and the integration of heat pumps within hybrid and district heating systems. Results indicate that hybrid HP systems achieve the lowest specific GHG emissions (0.108 kgCO2eq/kWh of heat delivered on average), followed by WSHPs (0.018 to 0.216 kgCO2eq/kWh), GSHPs (0.050–0.211 kgCO2eq/kWh), and ASHPs (0.083–0.216 kgCO2eq/kWh). HP systems show a potential GHG emission reduction of up to 90%, depending on the kind of technology and energy mix. Despite higher investment costs, the lower environmental footprint of GSHPs and WSHPs makes them attractive options for decarbonizing the building sector due to better performance resulting from more stable thermal input and higher SCOP. The integration of heat pumps with thermal storage, renewable energy, and smart control technologies further enhances their efficiency and climate benefits, regardless of the challenges facing their market potential. This review concludes that heat pumps, particularly in hybrid configurations, are a cornerstone technology for sustainable building heat supply and energy transition. Full article
(This article belongs to the Section A: Sustainable Energy)
Show Figures

Graphical abstract

18 pages, 3937 KiB  
Review
A Review of Heat Pump Systems and Applications in Cold Climates: Evidence from Lithuania
by Rokas Valancius, Rao Martand Singh, Andrius Jurelionis and Juozas Vaiciunas
Energies 2019, 12(22), 4331; https://doi.org/10.3390/en12224331 - 13 Nov 2019
Cited by 49 | Viewed by 11117
Abstract
Similar to other cold climate countries, space heating and domestic hot water (DHW) accounts form the largest share of household energy demand in Lithuania. Heat pump technology is considered to be one of the environmentally friendly solutions to increase energy efficiency and reduce [...] Read more.
Similar to other cold climate countries, space heating and domestic hot water (DHW) accounts form the largest share of household energy demand in Lithuania. Heat pump technology is considered to be one of the environmentally friendly solutions to increase energy efficiency and reduce the carbon footprint of buildings. Heat pumps have been finding their way into the Lithuanian market since 2002, and currently there are many good practice examples present in the country, especially in the residential and public sectors. Heat pump use is economically advantageous in the Baltic Region, and the market share of these systems is growing. Studies have reported seasonal performance factor (SPF) ranges within 1.8 and 5.6. The lower SPF values are typically attributable to air source heat pumps, whereas the higher efficiency is achieved by ground or water source heat pump applications. While the traditional heat pump techniques are well established in the region, there is a slow uptake of new technologies, such as solar-assisted heat pumps, absorption heat pumps and heat pumps integrated into foundations, tunnels or diaphragm walls. This paper provides a critical review of different heat pump technologies, using Lithuania as a cold climate case study to overview the market trends within the European context. Potential trends for the heat pump technology development in terms of application areas, cost-benefit predictions, as well as environmental aspects, are discussed. Full article
(This article belongs to the Special Issue Energy Efficiency in Buildings: Both New and Rehabilitated)
Show Figures

Figure 1

Back to TopTop