Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (7)

Search Parameters:
Keywords = adenosine trisphosphate (ATP)

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
13 pages, 1968 KiB  
Article
Gintonin Stimulates Glucose Uptake in Myocytes: Involvement of Calcium and Extracellular Signal-Regulated Kinase Signaling
by Rami Lee, Kyung-Jong Won, Ji-Hun Kim, Byung-Hwan Lee, Sung-Hee Hwang and Seung-Yeol Nah
Biomolecules 2024, 14(10), 1316; https://doi.org/10.3390/biom14101316 - 17 Oct 2024
Viewed by 1478
Abstract
Ginseng has anti-hyperglycemic effects. Gintonin, a glycolipoprotein derived from ginseng, also stimulates insulin release from pancreatic beta cells. However, the role of gintonin in glucose metabolism within skeletal muscle is unknown. Here, we showed the effect of gintonin on glucose uptake, glycogen content, [...] Read more.
Ginseng has anti-hyperglycemic effects. Gintonin, a glycolipoprotein derived from ginseng, also stimulates insulin release from pancreatic beta cells. However, the role of gintonin in glucose metabolism within skeletal muscle is unknown. Here, we showed the effect of gintonin on glucose uptake, glycogen content, glucose transporter (GLUT) 4 expression, and adenosine triphosphate (ATP) content in C2C12 myotubes. Gintonin (3–30 μg/mL) dose-dependently stimulated glucose uptake in myotubes. The expression of GLUT4 on the cell membrane was increased by gintonin treatment. Treatment with 1–3 μg/mL of gintonin increased glycogen content in myotubes, but the content was decreased at 30 μg/mL of gintonin. The ATP content in myotubes increased following treatment with 10–100 μg/mL gintonin. Gintonin transiently elevated intracellular calcium concentrations and increased the phosphorylation of extracellular signal-regulated kinase (ERK). Gintonin-induced transient calcium increases were inhibited by treatment with the lysophosphatidic acid receptor inhibitor Ki16425, the phospholipase C inhibitor U73122, and the inositol 1,4,5-trisphosphate receptor antagonist 2-aminoethoxydiphenyl borate. Gintonin-stimulated glucose uptake was decreased by treatment with U73122, the intracellular calcium chelator 1,2-bis(o-aminophenoxy)ethane-N,N,N′,N′-tetraacetic acid tetra(acetoxymethyl) ester, and the ERK inhibitor PD98059. These results show that gintonin plays a role in glucose metabolism by increasing glucose uptake through transient calcium increases and ERK signaling pathways. Thus, gintonin may be beneficial for glucose metabolism control. Full article
(This article belongs to the Special Issue Therapeutic Potential of Natural Products in Metabolic Diseases)
Show Figures

Figure 1

15 pages, 2261 KiB  
Article
Daidzein Inhibits Human Platelet Activation by Downregulating Thromboxane A2 Production and Granule Release, Regardless of COX-1 Activity
by Hyun-Jin Hong, Gi-Suk Nam and Kyung-Soo Nam
Int. J. Mol. Sci. 2023, 24(15), 11985; https://doi.org/10.3390/ijms241511985 - 26 Jul 2023
Cited by 9 | Viewed by 2399
Abstract
Platelets play crucial roles in cardiovascular diseases (CVDs) by regulating hemostasis and blood coagulation at sites of blood vessel damage. Accumulating evidence indicates daidzein inhibits platelet activation, but the mechanism involved has not been elucidated. Thus, in this study, we investigated the mechanism [...] Read more.
Platelets play crucial roles in cardiovascular diseases (CVDs) by regulating hemostasis and blood coagulation at sites of blood vessel damage. Accumulating evidence indicates daidzein inhibits platelet activation, but the mechanism involved has not been elucidated. Thus, in this study, we investigated the mechanism responsible for the inhibition of collagen-induced platelet aggregation by daidzein. We found that in collagen-induced platelets, daidzein suppressed the production of thromboxane A2 (TXA2), a molecule involved in platelet activation and aggregation, by inhibiting the cytosolic phospholipase A2 (cPLA2) signaling pathway. However, daidzein did not affect cyclooxygenase-1 (COX-1). Furthermore, daidzein attenuated the PI3K/PDK1/Akt/GSK3αβ and MAPK (p38, ERK) signaling pathways, increased the phosphorylation of inositol trisphosphate receptor1 (IP3R1) and vasodilator-stimulated phosphoprotein (VASP), and increased the level of cyclic adenosine monophosphate (cAMP). These results suggest that daidzein inhibits granule release (ATP, serotonin, P-selectin), integrin αIIbβ3 activation, and clot retraction. Taken together, our study demonstrates that daidzein inhibits collagen-induced platelet aggregation and suggests that daidzein has therapeutic potential for the treatment of platelet aggregation-related diseases such as atherosclerosis and thrombosis. Full article
(This article belongs to the Special Issue Molecular Research on Platelet Activity in Health and Disease 2024)
Show Figures

Figure 1

24 pages, 6454 KiB  
Review
The Potential Role of Connexins in the Pathogenesis of Atherosclerosis
by Kajetan Kiełbowski, Estera Bakinowska and Andrzej Pawlik
Int. J. Mol. Sci. 2023, 24(3), 2600; https://doi.org/10.3390/ijms24032600 - 30 Jan 2023
Cited by 7 | Viewed by 4475
Abstract
Connexins (Cx) are members of a protein family which enable extracellular and intercellular communication through hemichannels and gap junctions (GJ), respectively. Cx take part in transporting important cell–cell messengers such as 3′,5′-cyclic adenosine monophosphate (cAMP), adenosine triphosphate (ATP), and inositol 1,4,5-trisphosphate (IP3), among [...] Read more.
Connexins (Cx) are members of a protein family which enable extracellular and intercellular communication through hemichannels and gap junctions (GJ), respectively. Cx take part in transporting important cell–cell messengers such as 3′,5′-cyclic adenosine monophosphate (cAMP), adenosine triphosphate (ATP), and inositol 1,4,5-trisphosphate (IP3), among others. Therefore, they play a significant role in regulating cell homeostasis, proliferation, and differentiation. Alterations in Cx distribution, degradation, and post-translational modifications have been correlated with cancers, as well as cardiovascular and neurological diseases. Depending on the isoform, Cx have been shown either to promote or suppress the development of atherosclerosis, a progressive inflammatory disease affecting large and medium-sized arteries. Cx might contribute to the progression of the disease by enhancing endothelial dysfunction, monocyte recruitment, vascular smooth muscle cell (VSMC) activation, or by inhibiting VSMC autophagy. Inhibition or modulation of the expression of specific isoforms could suppress atherosclerotic plaque formation and diminish pro-inflammatory conditions. A better understanding of the complexity of atherosclerosis pathophysiology linked with Cx could result in developing novel therapeutic strategies. This review aims to present the role of Cx in the pathogenesis of atherosclerosis and discusses whether they can become novel therapeutic targets. Full article
(This article belongs to the Special Issue Connexin Hemichannels: Structure, Function, and Dysfunction)
Show Figures

Figure 1

26 pages, 1643 KiB  
Review
Connexin Mutations and Hereditary Diseases
by Yue Qiu, Jianglin Zheng, Sen Chen and Yu Sun
Int. J. Mol. Sci. 2022, 23(8), 4255; https://doi.org/10.3390/ijms23084255 - 12 Apr 2022
Cited by 33 | Viewed by 6504
Abstract
Inherited diseases caused by connexin mutations are found in multiple organs and include hereditary deafness, congenital cataract, congenital heart diseases, hereditary skin diseases, and X-linked Charcot–Marie–Tooth disease (CMT1X). A large number of knockout and knock-in animal models have been used to study the [...] Read more.
Inherited diseases caused by connexin mutations are found in multiple organs and include hereditary deafness, congenital cataract, congenital heart diseases, hereditary skin diseases, and X-linked Charcot–Marie–Tooth disease (CMT1X). A large number of knockout and knock-in animal models have been used to study the pathology and pathogenesis of diseases of different organs. Because the structures of different connexins are highly homologous and the functions of gap junctions formed by these connexins are similar, connexin-related hereditary diseases may share the same pathogenic mechanism. Here, we analyze the similarities and differences of the pathology and pathogenesis in animal models and find that connexin mutations in gap junction genes expressed in the ear, eye, heart, skin, and peripheral nerves can affect cellular proliferation and differentiation of corresponding organs. Additionally, some dominant mutations (e.g., Cx43 p.Gly60Ser, Cx32 p.Arg75Trp, Cx32 p.Asn175Asp, and Cx32 p.Arg142Trp) are identified as gain-of-function variants in vivo, which may play a vital role in the onset of dominant inherited diseases. Specifically, patients with these dominant mutations receive no benefits from gene therapy. Finally, the complete loss of gap junctional function or altered channel function including permeability (ions, adenosine triphosphate (ATP), Inositol 1,4,5-trisphosphate (IP3), Ca2+, glucose, miRNA) and electric activity are also identified in vivo or in vitro. Full article
(This article belongs to the Topic Cellular Redox Homeostasis)
Show Figures

Figure 1

19 pages, 4560 KiB  
Article
Anti-Thrombotic Effects of Artesunate through Regulation of cAMP and PI3K/MAPK Pathway on Human Platelets
by Shin-Sook Yoon, Hyuk-Woo Kwon, Jung-Hae Shin, Man Hee Rhee, Chang-Eun Park and Dong-Ha Lee
Int. J. Mol. Sci. 2022, 23(3), 1586; https://doi.org/10.3390/ijms23031586 - 29 Jan 2022
Cited by 23 | Viewed by 4103
Abstract
Normal activation of platelets and their aggregation are crucial for proper hemostasis. It appears that excessive or abnormal aggregation of platelets may bring about cardiovascular diseases such as stroke, atherosclerosis, and thrombosis. For this reason, finding a substance that can regulate platelet aggregation [...] Read more.
Normal activation of platelets and their aggregation are crucial for proper hemostasis. It appears that excessive or abnormal aggregation of platelets may bring about cardiovascular diseases such as stroke, atherosclerosis, and thrombosis. For this reason, finding a substance that can regulate platelet aggregation or suppress aggregation will aid in the prevention and treatment of cardiovascular diseases. Artesunate is a compound extracted from the plant roots of Artemisia or Scopolia, and its effects have shown to be promising in areas of anticancer and Alzheimer’s disease. However, the role and mechanisms by which artesunate affects the aggregation of platelets and the formation of a thrombus are currently not understood. This study examines the ways artesunate affects the aggregation of platelets and the formation of a thrombus on platelets induced by U46619. As a result, cyclic adenosine monophosphate (cAMP) and cyclic guanosine monophosphate (cGMP) production were increased significantly by artesunate relative to the doses, as well as phosphorylated vasodilator-stimulated phosphoprotein (VASP) and inositol 1,4,5-trisphosphate receptor (IP3R), substrates to cAMP-dependent kinase and cGMP-dependent kinase, in a significant manner. The Ca2+, normally mobilized from the dense tubular system, was inhibited due to IP3R phosphorylation from artesunate, and phosphorylated VASP aided in inhibiting platelet activity via αIIb/β3 platelet membrane inactivation and inhibiting fibrinogen binding. In addition, MAPK and PI3K/Akt phosphorylation was inhibited via artesunate in a significant manner, causing the production of TXA2 and intracellular granular secretion (serotonin and ATP release) to be reduced. Therefore, we suggest that artesunate has value as a substance that inhibits platelet aggregation and thrombus formation through an antiplatelet mechanism. Full article
(This article belongs to the Special Issue The Role of Platelets in Human Health and Disease)
Show Figures

Figure 1

10 pages, 936 KiB  
Review
Pathophysiology of Mitochondrial Dysfunction in Human Spermatozoa: Focus on Energetic Metabolism, Oxidative Stress and Apoptosis
by Chiara Castellini, Settimio D’Andrea, Giuliana Cordeschi, Maria Totaro, Antonio Parisi, Giovanna Di Emidio, Carla Tatone, Sandro Francavilla and Arcangelo Barbonetti
Antioxidants 2021, 10(5), 695; https://doi.org/10.3390/antiox10050695 - 28 Apr 2021
Cited by 47 | Viewed by 4865
Abstract
The dogma of mitochondria as the major source of energy in supporting sperm motility should be critically reconsidered in the light of several experimental data pointing to a major role of glycolysis in mammalian spermatozoa. In this light, the reported positive correlation between [...] Read more.
The dogma of mitochondria as the major source of energy in supporting sperm motility should be critically reconsidered in the light of several experimental data pointing to a major role of glycolysis in mammalian spermatozoa. In this light, the reported positive correlation between the mitochondrial membrane potential (ΔΨm) and motility of ejaculated spermatozoa cannot be explained convincingly by an impaired mitochondrial ATP generation only. Evidence has been produced suggesting that, in human sperm, dysfunctional mitochondria represent the main site of generation of reactive oxygen species (ROS). Furthermore, in these organelles, a complex bidirectional relationship could exist between ROS generation and apoptosis-like events that synergize with oxidative stress in impairing sperm biological integrity and functions. Despite the activity of enzymatic and non-enzymatic antioxidant factors, human spermatozoa are particularly vulnerable to oxidative stress, which plays a major role in male factor infertility. The purpose of this article is to provide an overview of metabolic, oxidative and apoptosis-like inter-linkages of mitochondrial dysfunction and their reflections on human sperm biology. Full article
(This article belongs to the Special Issue Mitochondria Biology in Reproductive Function)
Show Figures

Figure 1

25 pages, 5362 KiB  
Article
Investigating the Transition of Pre-Symptomatic to Symptomatic Huntington’s Disease Status Based on Omics Data
by Christiana C. Christodoulou, Margarita Zachariou, Marios Tomazou, Evangelos Karatzas, Christiana A. Demetriou, Eleni Zamba-Papanicolaou and George M. Spyrou
Int. J. Mol. Sci. 2020, 21(19), 7414; https://doi.org/10.3390/ijms21197414 - 8 Oct 2020
Cited by 26 | Viewed by 4712
Abstract
Huntington’s disease is a rare neurodegenerative disease caused by a cytosine–adenine–guanine (CAG) trinucleotide expansion in the Huntingtin (HTT) gene. Although Huntington’s disease (HD) is well studied, the pathophysiological mechanisms, genes and metabolites involved in HD remain poorly understood. Systems bioinformatics can [...] Read more.
Huntington’s disease is a rare neurodegenerative disease caused by a cytosine–adenine–guanine (CAG) trinucleotide expansion in the Huntingtin (HTT) gene. Although Huntington’s disease (HD) is well studied, the pathophysiological mechanisms, genes and metabolites involved in HD remain poorly understood. Systems bioinformatics can reveal synergistic relationships among different omics levels and enables the integration of biological data. It allows for the overall understanding of biological mechanisms, pathways, genes and metabolites involved in HD. The purpose of this study was to identify the differentially expressed genes (DEGs), pathways and metabolites as well as observe how these biological terms differ between the pre-symptomatic and symptomatic HD stages. A publicly available dataset from the Gene Expression Omnibus (GEO) was analyzed to obtain the DEGs for each HD stage, and gene co-expression networks were obtained for each HD stage. Network rewiring, highlights the nodes that change most their connectivity with their neighbors and infers their possible implication in the transition between different states. The CACNA1I gene was the mostly highly rewired node among pre-symptomatic and symptomatic HD network. Furthermore, we identified AF198444 to be common between the rewired genes and DEGs of symptomatic HD. CNTN6, DEK, LTN1, MST4, ZFYVE16, CEP135, DCAKD, MAP4K3, NUPL1 and RBM15 between the DEGs of pre-symptomatic and DEGs of symptomatic HD and CACNA1I, DNAJB14, EPS8L3, HSDL2, SNRPD3, SOX12, ACLY, ATF2, BAG5, ERBB4, FOCAD, GRAMD1C, LIN7C, MIR22, MTHFR, NABP1, NRG2, OTC, PRAMEF12, SLC30A10, STAG2 and Y16709 between the rewired genes and DEGs of pre-symptomatic HD. The proteins encoded by these genes are involved in various biological pathways such as phosphatidylinositol-4,5-bisphosphate 3-kinase activity, cAMP response element-binding protein binding, protein tyrosine kinase activity, voltage-gated calcium channel activity, ubiquitin protein ligase activity, adenosine triphosphate (ATP) binding, and protein serine/threonine kinase. Additionally, prominent molecular pathways for each HD stage were then obtained, and metabolites related to each pathway for both disease stages were identified. The transforming growth factor beta (TGF-β) signaling (pre-symptomatic and symptomatic stages of the disease), calcium (Ca2+) signaling (pre-symptomatic), dopaminergic synapse pathway (symptomatic HD patients) and Hippo signaling (pre-symptomatic) pathways were identified. The in silico metabolites we identified include Ca2+, inositol 1,4,5-trisphosphate, sphingosine 1-phosphate, dopamine, homovanillate and L-tyrosine. The genes, pathways and metabolites identified for each HD stage can provide a better understanding of the mechanisms that become altered in each disease stage. Our results can guide the development of therapies that may target the altered genes and metabolites of the perturbed pathways, leading to an improvement in clinical symptoms and hopefully a delay in the age of onset. Full article
Show Figures

Figure 1

Back to TopTop