Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (7)

Search Parameters:
Keywords = ad hoc on-demand multipath distance vector (AOMDV)

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
29 pages, 6184 KiB  
Article
MANET Routing Protocols’ Performance Assessment Under Dynamic Network Conditions
by Ibrahim Mohsen Selim, Naglaa Sayed Abdelrehem, Walaa M. Alayed, Hesham M. Elbadawy and Rowayda A. Sadek
Appl. Sci. 2025, 15(6), 2891; https://doi.org/10.3390/app15062891 - 7 Mar 2025
Viewed by 2669
Abstract
Mobile Ad Hoc Networks (MANETs) are decentralized wireless networks characterized by dynamic topologies and the absence of fixed infrastructure. These unique features make MANETs critical for applications such as disaster recovery, military operations, and IoT systems. However, they also pose significant challenges for [...] Read more.
Mobile Ad Hoc Networks (MANETs) are decentralized wireless networks characterized by dynamic topologies and the absence of fixed infrastructure. These unique features make MANETs critical for applications such as disaster recovery, military operations, and IoT systems. However, they also pose significant challenges for efficient and effective routing. This study evaluates the performance of eight MANET routing protocols: Optimized Link State Routing (OLSR), Destination-Sequenced Distance Vector (DSDV), Ad Hoc On-Demand Distance Vector (AODV), Dynamic Source Routing (DSR), Ad Hoc On-Demand Multipath Distance Vector (AOMDV), Temporally Ordered Routing Algorithm (TORA), Zone Routing Protocol (ZRP), and Geographic Routing Protocol (GRP). Using a custom simulation environment in OMNeT++ 6.0.1 with INET-4.5.0, the protocols were tested under four scenarios with varying node densities (20, 80, 200, and 500 nodes). The simulations utilized the Random Waypoint Mobility model to mimic dynamic node movement and evaluated key performance metrics, including network load, throughput, delay, energy consumption, jitter, packet loss rate, and packet delivery ratio. The results reveal that proactive protocols like OLSR are ideal for stable, low-density environments, while reactive protocols such as AOMDV and TORA excel in dynamic, high-mobility scenarios. Hybrid protocols, particularly GRP, demonstrate a balanced approach; achieving superior overall performance with up to 30% lower energy consumption and higher packet delivery ratios compared to reactive protocols. These findings provide practical insights into the optimal selection and deployment of MANET routing protocols for diverse applications, emphasizing the potential of hybrid protocols for modern networks like IoT and emergency response systems. Full article
(This article belongs to the Special Issue Applications of Wireless and Mobile Communications)
Show Figures

Figure 1

14 pages, 3606 KiB  
Article
Secure Cooperative Routing in Wireless Sensor Networks
by Rida Batool, Nargis Bibi, Samah Alhazmi and Nazeer Muhammad
Appl. Sci. 2024, 14(12), 5220; https://doi.org/10.3390/app14125220 - 16 Jun 2024
Cited by 2 | Viewed by 1452
Abstract
In wireless sensor networks (WSNs), sensor nodes are randomly distributed to transmit sensed data packets to the base station periodically. These sensor nodes, because of constrained battery power and storage space, cannot utilize conventional security measures. The widely held challenging issues for the [...] Read more.
In wireless sensor networks (WSNs), sensor nodes are randomly distributed to transmit sensed data packets to the base station periodically. These sensor nodes, because of constrained battery power and storage space, cannot utilize conventional security measures. The widely held challenging issues for the network layer of WSNs are the packet-dropping attacks, mainly sinkhole and wormhole attacks, which focus on the routing pattern of the protocol. This thesis presents an improved version of the second level of the guard to the system, intrusion detection systems (IDSs), to limit the hostile impact of these attacks in a Low Energy Adaptive Clustering Hierarchy (LEACH) environment. The proposed system named multipath intrusion detection system (MIDS) integrates an IDs with ad hoc on-demand Multipath Distance Vector (AOMDV) protocol. The IDS agent uses the number of packets transmitted and received to calculate intrusion ratio (IR), which helps to mitigate sinkhole attacks and from AOMDV protocol round trip time (RTT) is computed by taking the difference between route request and route reply time to mitigate wormhole attack. MATLAB simulation results show that this cooperative model is an effective technique due to the higher packet delivery ratio (PDR), throughput, and detection accuracy. The proposed MIDS algorithm is proven to be more efficient when compared with an existing LEACH-based IDS system and MS-LEACH in terms of overall energy consumption, lifetime, and throughput of the network. Full article
Show Figures

Figure 1

15 pages, 1082 KiB  
Article
Arithmetic Optimization AOMDV Routing Protocol for FANETs
by Huamin Wang, Yongfu Li, Yubing Zhang, Tiancong Huang and Yang Jiang
Sensors 2023, 23(17), 7550; https://doi.org/10.3390/s23177550 - 31 Aug 2023
Cited by 10 | Viewed by 2338
Abstract
Flying ad hoc networks (FANETs), composed of small unmanned aerial vehicles (UAVs), possess characteristics of flexibility, cost-effectiveness, and rapid deployment, rendering them highly attractive for a wide range of civilian and military applications. FANETs are special mobile ad hoc networks (MANETs), FANETs have [...] Read more.
Flying ad hoc networks (FANETs), composed of small unmanned aerial vehicles (UAVs), possess characteristics of flexibility, cost-effectiveness, and rapid deployment, rendering them highly attractive for a wide range of civilian and military applications. FANETs are special mobile ad hoc networks (MANETs), FANETs have the characteristics of faster network topology changes and limited energy. Existing reactive routing protocols are unsuitable for the highly dynamic and limited energy of FANETs. For the lithium battery-powered UAV, flight endurance lasts from half an hour to two hours. The fast-moving UAV not only affects the packet delivery rate, average throughput, and end-to-end delay but also shortens the flight endurance. Therefore, research is urgently needed into a high-performance routing protocol with high energy efficiency. In this paper, we propose a novel routing protocol called AO-AOMDV, which utilizes arithmetic optimization (AO) to enhance the ad hoc on-demand multi-path distance vector (AOMDV) routing protocol. The AO-AOMDV utilizes a fitness function to calculate the fitness value of multiple paths and employs arithmetic optimization for selecting the optimal route for routing selection. Our experiments were conducted using NS3 with three evaluation metrics: the packet delivery ratio, network lifetime, and average end-to-end delay. We compare this algorithm to routing protocols including AOMDV and AODV. The results indicate that the proposed AO-AOMDV attained a higher packet delivery ratio, network lifetime, and lower average end-to-end delay. Full article
(This article belongs to the Special Issue UAV Based Wireless Sensor Networks in Smart Cities)
Show Figures

Figure 1

14 pages, 1526 KiB  
Article
Wireless Body Area Routing Protocols Impact Analysis on Entity Mobility Models with Static Sink Node
by Sunny Singh, Devendra Prasad, Shalli Rani, Aman Singh, Fahd S. Alharithi and Jasem Almotiri
Appl. Sci. 2022, 12(11), 5655; https://doi.org/10.3390/app12115655 - 2 Jun 2022
Cited by 5 | Viewed by 2453
Abstract
The most important and emerging characteristic of Wireless Body Area Networks (WBANs), which differentiates them from other wired and wireless area networks, is mobility. Therefore, the routing protocols for WBAN are designed in such a way that they can deal with dynamic changes [...] Read more.
The most important and emerging characteristic of Wireless Body Area Networks (WBANs), which differentiates them from other wired and wireless area networks, is mobility. Therefore, the routing protocols for WBAN are designed in such a way that they can deal with dynamic changes in topology and provide maximum throughput, packet delivery ratio, average end-to-end delay, and minimum energy consumption. Thus, achieving optimal values for every performance parameter becomes a big challenge. This work investigates the performance of three separate path discovery protocols, such as Destination-Sequenced Distance-Vector Routing (DSDV), Ad Hoc On-demand Distance Vector (AODV), and Ad Hoc On-demand Multipath Distance Vector Routing protocol (AOMDV), for two different mobility models with a fixed-positioned sink. During experimentation, the AOMDV routing protocol achieves a high packet delivery ratio (PDR), average end-to-end delay, and throughput as compared to other routing protocols. Full article
Show Figures

Figure 1

21 pages, 3934 KiB  
Communication
Energy Efficient Routing Protocol in Sensor Networks Using Genetic Algorithm
by Jatinkumar Patel and Hosam El-Ocla
Sensors 2021, 21(21), 7060; https://doi.org/10.3390/s21217060 - 25 Oct 2021
Cited by 27 | Viewed by 3688
Abstract
In this paper, we examine routing protocols with the shortest path in sensor networks. In doing this, we propose a genetic algorithm (GA)-based Ad Hoc On-Demand Multipath Distance Vector routing protocol (GA-AOMDV). We utilize a fitness function that optimizes routes based on the [...] Read more.
In this paper, we examine routing protocols with the shortest path in sensor networks. In doing this, we propose a genetic algorithm (GA)-based Ad Hoc On-Demand Multipath Distance Vector routing protocol (GA-AOMDV). We utilize a fitness function that optimizes routes based on the energy consumption in their nodes. We compare this algorithm with other existing ad hoc routing protocols including LEACH-GA, GA-AODV, AODV, DSR, EPAR, EBAR_BFS. Results prove that our protocol enhances the network performance in terms of packet delivery ratio, throughput, round trip time and energy consumption. GA-AOMDV protocol achieves average gain that is 7 to 22% over other protocols. Therefore, our protocol extends the network lifetime for data communications. Full article
(This article belongs to the Special Issue Distributed Algorithms for Wireless Sensor Networks)
Show Figures

Figure 1

19 pages, 939 KiB  
Article
Energy-Balanced Routing Algorithm Based on Ant Colony Optimization for Mobile Ad Hoc Networks
by Dong Yang, Hongxing Xia, Erfei Xu, Dongliang Jing and Hailin Zhang
Sensors 2018, 18(11), 3657; https://doi.org/10.3390/s18113657 - 28 Oct 2018
Cited by 28 | Viewed by 4040
Abstract
The mobile ad hoc network (MANET) is a multi-hop, non-central network composed of mobile terminals with self-organizing features. Aiming at the problem of extra energy consumption caused by node motion in MANETs, this paper proposes an improved energy and mobility ant colony optimization [...] Read more.
The mobile ad hoc network (MANET) is a multi-hop, non-central network composed of mobile terminals with self-organizing features. Aiming at the problem of extra energy consumption caused by node motion in MANETs, this paper proposes an improved energy and mobility ant colony optimization (IEMACO) routing algorithm. Firstly, the algorithm accelerates the convergence speed of the routing algorithm and reduces the number of route discovery packets by introducing an offset coefficient of the transition probability. Then, based on the energy consumption rate, the remaining lifetime of nodes (RLTn) is considered. The position and velocity information predicts the remaining lifetime of the link (RLTl). The algorithm combines RLTn and RLTl to design the pheromone generation method, which selects the better quality path according to the transition probability to ensure continuous data transmission. As a result, the energy consumption in the network is balanced. The simulation results show that compared to the Ad Hoc on-demand multipath distance vector (AOMDV) algorithm with multipath routing and the Ant Hoc Max-Min-Path (AntHocMMP) algorithm in consideration of node energy consumption and mobility, the IEMACO algorithm can reduce the frequency of route discovery and has lower end-to-end delay as well as packet loss rate especially when nodes move, and can extend the network lifetime. Full article
(This article belongs to the Section Sensor Networks)
Show Figures

Figure 1

22 pages, 2811 KiB  
Conference Report
A Smart Sensor Grid to Enhance Irrigation Techniques in Jordan Using a Novel Event-Based Routing Protocol
by Maher Ali Al Rantisi, Glenford Mapp and Orhan Gemikonakli
Multimodal Technol. Interact. 2017, 1(2), 9; https://doi.org/10.3390/mti1020009 - 16 May 2017
Viewed by 5133
Abstract
Due to rapid changes in climatic conditions worldwide, environmental monitoring has become one of the greatest concerns in the last few years. With the advancement in wireless sensing technology, it is now possible to monitor and track fine-grained changes in harsh outdoor environments. [...] Read more.
Due to rapid changes in climatic conditions worldwide, environmental monitoring has become one of the greatest concerns in the last few years. With the advancement in wireless sensing technology, it is now possible to monitor and track fine-grained changes in harsh outdoor environments. Wireless sensor networks (WSN) provide very high quality and accurate analysis for monitoring of both spatial and temporal data, thus providing the opportunity to monitor harsh outdoor environments. However, to deploy and maintain a WSN in such harsh environments is a great challenge for researchers and scientists. Several routing protocols exist for data dissemination and power management but they suffer from various disadvantages. In our case study, there are very limited water resources in the Middle East, hence soil moisture measurements must be taken into account to manage irrigation and аgriculturаl projects. In order to meet these challenges, a Smart Grid that supports a robust, reactive, event-based routing protocol is developed using Ad hoc On-Demand Multipath Distance Vector (AOMDV) as a starting point. A prototype WSN network of 5 nodes is built and a detailed simulation of 30 nodes is also developed to test the scalability of the new system. Full article
Show Figures

Figure 1

Back to TopTop