Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (1)

Search Parameters:
Keywords = abeitis

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 1679 KiB  
Article
Discovery of Antifungal and Biofilm Preventative Compounds from Mycelial Cultures of a Unique North American Hericium sp. Fungus
by Xun Song, François Gaascht, Claudia Schmidt-Dannert and Christine E. Salomon
Molecules 2020, 25(4), 963; https://doi.org/10.3390/molecules25040963 - 20 Feb 2020
Cited by 35 | Viewed by 6542
Abstract
Edible mushrooms are an important source of nutraceuticals and for the discovery of bioactive metabolites as pharmaceuticals. In this work, the OSMAC (One Strain, Many Active Compounds) approach was used to isolate two new compounds (1 and 2) along with seven [...] Read more.
Edible mushrooms are an important source of nutraceuticals and for the discovery of bioactive metabolites as pharmaceuticals. In this work, the OSMAC (One Strain, Many Active Compounds) approach was used to isolate two new compounds (1 and 2) along with seven known compounds (39) from a mycelial culture of a unique North American edible mushroom Hericium sp. The fruiting body was collected in Marine on St. Croix, Minnesota (USA), and mycelial cultures were grown on four different solid and liquid media. Extracts from the mycelial cultures were screened for antimicrobial activity and only the extract from the Cheerios substrate culture exhibited antifungal activity. Bioassay guided fractionation and HPLC analysis were used to isolate nine pure compounds and the structures of the known compounds were established by analysis of the NMR and mass spectrometry data and comparison to published reports. Compound 1 is a new erinacerin alkaloid and 2 is an aldehyde derivative of 4-hydroxy chroman. Four chlorinated orcinol derivatives (36), a pyran (7), erinaceolactone (8), and erinacine (9) were identified. Compound 4 showed antifungal activity against C. albicans and C. neoformans (MIC = 31.3–62.5 μg/mL, respectively). Compound 4 also inhibited biofilm formation of C. albicans and C. neoformans at 7.8 μg/mL. These results suggest that mycelial cultures of edible fungi may provide useful, bioactive compounds. Full article
(This article belongs to the Section Natural Products Chemistry)
Show Figures

Graphical abstract

Back to TopTop