Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (1)

Search Parameters:
Keywords = aRDG

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 6917 KiB  
Article
aRDG Analysis of Asphaltene Molecular Viscosity and Molecular Interaction Based on Non-Equilibrium Molecular Dynamics Simulation
by Qunchao Lin, Lei Deng, Ge Dong, Xianqiong Tang, Wei Li, Zhengwu Long and Fu Xu
Materials 2022, 15(24), 8771; https://doi.org/10.3390/ma15248771 - 8 Dec 2022
Cited by 5 | Viewed by 1963
Abstract
Understanding the noncovalent (weak) interactions between asphaltene molecules is crucial to further comprehending the viscosity and aggregation behavior of asphaltenes. In the past, intermolecular interactions were characterized indirectly by calculating the radial distribution function and the numerical distribution of distances/angles between atoms, which [...] Read more.
Understanding the noncovalent (weak) interactions between asphaltene molecules is crucial to further comprehending the viscosity and aggregation behavior of asphaltenes. In the past, intermolecular interactions were characterized indirectly by calculating the radial distribution function and the numerical distribution of distances/angles between atoms, which are far less intuitive than the average reduced density gradient (aRDG) method. This study selected three representative asphaltene molecules (AsphalteneO, AsphalteneT, and AsphalteneY) to investigate the relationship between viscosity and weak intermolecular interactions. Firstly, a non-equilibrium molecular dynamics (NEMD) simulation was employed to calculate the shear viscosities of these molecules and analyze their aggregation behaviors. In addition, the types of weak intermolecular interactions of asphaltene were visualized by the aRDG method. Finally, the stability of the weak intermolecular interactions was analyzed by the thermal fluctuation index (TFI). The results indicate that AsphalteneY has the highest viscosity. The aggregation behavior of AsphalteneO is mainly face–face stacking, while AsphalteneT and AsphalteneY associate mainly via offset stacking and T-shaped stacking. According to the aRDG analysis, the weak interactions between AshalteneT molecules are similar to those between AshalteneO molecules, mainly due to van der Waals interactions and steric hindrance effects. At the same time, there is a strong attraction between AsphalteneY molecules. Additionally, the results of the TFI analysis show that the weak intermolecular interactions of the three types of asphaltene molecules are relatively stable and not significantly affected by thermal motion. Our results provide a new method for better understanding asphaltene molecules’ viscosity and aggregation behavior. Full article
(This article belongs to the Section Materials Simulation and Design)
Show Figures

Figure 1

Back to TopTop