Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (1)

Search Parameters:
Keywords = Zucker diabetic fatty-female (ZDF-F)

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
23 pages, 4882 KiB  
Article
Cardiovascular Protective Effects of NP-6A4, a Drug with the FDA Designation for Pediatric Cardiomyopathy, in Female Rats with Obesity and Pre-Diabetes
by Anthony M. Belenchia, Asma Boukhalfa, Vincent G. DeMarco, Alexander Mehm, Abuzar Mahmood, Pei Liu, Yinian Tang, Madhavi P. Gavini, Brian Mooney, Howard H. Chen and Lakshmi Pulakat
Cells 2023, 12(10), 1373; https://doi.org/10.3390/cells12101373 - 12 May 2023
Cited by 5 | Viewed by 2756
Abstract
Background: Obese and pre-diabetic women have a higher risk for cardiovascular death than age-matched men with the same symptoms, and there are no effective treatments. We reported that obese and pre-diabetic female Zucker Diabetic Fatty (ZDF-F) rats recapitulate metabolic and cardiac pathology of [...] Read more.
Background: Obese and pre-diabetic women have a higher risk for cardiovascular death than age-matched men with the same symptoms, and there are no effective treatments. We reported that obese and pre-diabetic female Zucker Diabetic Fatty (ZDF-F) rats recapitulate metabolic and cardiac pathology of young obese and pre-diabetic women and exhibit suppression of cardio-reparative AT2R. Here, we investigated whether NP-6A4, a new AT2R agonist with the FDA designation for pediatric cardiomyopathy, mitigate heart disease in ZDF-F rats by restoring AT2R expression. Methods: ZDF-F rats on a high-fat diet (to induce hyperglycemia) were treated with saline, NP-6A4 (10 mg/kg/day), or NP-6A4 + PD123319 (AT2R-specific antagonist, 5 mg/kg/day) for 4 weeks (n = 21). Cardiac functions, structure, and signaling were assessed by echocardiography, histology, immunohistochemistry, immunoblotting, and cardiac proteome analysis. Results: NP-6A4 treatment attenuated cardiac dysfunction, microvascular damage (−625%) and cardiomyocyte hypertrophy (−263%), and increased capillary density (200%) and AT2R expression (240%) (p < 0.05). NP-6A4 activated a new 8-protein autophagy network and increased autophagy marker LC3-II but suppressed autophagy receptor p62 and autophagy inhibitor Rubicon. Co-treatment with AT2R antagonist PD123319 suppressed NP-6A4’s protective effects, confirming that NP-6A4 acts through AT2R. NP-6A4-AT2R-induced cardioprotection was independent of changes in body weight, hyperglycemia, hyperinsulinemia, or blood pressure. Conclusions: Cardiac autophagy impairment underlies heart disease induced by obesity and pre-diabetes, and there are no drugs to re-activate autophagy. We propose that NP-6A4 can be an effective drug to reactivate cardiac autophagy and treat obesity- and pre-diabetes-induced heart disease, particularly for young and obese women. Full article
(This article belongs to the Special Issue Recent Advances of Oxidative Stress and Inflammation in Diabetes)
Show Figures

Figure 1

Back to TopTop